Thermodynamical cost of some interpretations of quantum theory

The interpretation of quantum theory is one of the longest-standing debates in physics. Type I interpretations see quantum probabilities as determined by intrinsic properties of the observed system ...

[1]  Yonggun Jun,et al.  High-precision test of Landauer's principle in a feedback trap. , 2014, Physical review letters.

[2]  Amr Sabry,et al.  Geometry of discrete quantum computing , 2012, 1206.5823.

[3]  H. Everett "Relative State" Formulation of Quantum Mechanics , 1957 .

[4]  Benjamin Schumacher,et al.  Modal Quantum Theory , 2010, 1204.0701.

[5]  Karoline Wiesner,et al.  Information-theoretic lower bound on energy cost of stochastic computation , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[7]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[8]  M. Redhead Quantum theory and measurement , 1984 .

[9]  Jeffrey Bub,et al.  Paradigms and Paradoxes: The philosophical challenge of the quantum domain , 1976 .

[10]  C. Fuchs QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.

[11]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[12]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[13]  A. Zeilinger A Foundational Principle for Quantum Mechanics , 1999, Synthese Library.

[14]  Jeffrey A. Barrett,et al.  Many Worlds Interpretation of Quantum Mechanics , 2009, Compendium of Quantum Physics.

[15]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[16]  F. Schmidt-Kaler,et al.  Dynamics and control of fast ion crystal splitting in segmented Paul traps , 2014, 1403.0097.

[17]  Albert Einstein,et al.  Physics and reality , 1936 .

[18]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[19]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[20]  M. Born,et al.  Statistical Interpretation of Quantum Mechanics. , 1955, Science.

[21]  N. David Mermin,et al.  An introduction to QBism with an application to the locality of quantum mechanics , 2013, 1311.5253.

[22]  N. David Mermin,et al.  Boojums All The Way Through , 1990 .

[23]  J. Bell,et al.  The Theory of Local Beables , 1975 .

[24]  Physical Review , 1965, Nature.

[25]  C. Rovelli,et al.  Relational Quantum Mechanics , 2006 .

[26]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[27]  Shiro Ishikawa,et al.  A New Interpretation of Quantum Mechanics , 2011, J. Quantum Inf. Sci..

[28]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[29]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[30]  James P. Crutchfield,et al.  Computational Mechanics of Input-Output Processes: Structured transformations and the ε-transducer , 2014, ArXiv.

[31]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[32]  Asher Peres,et al.  Quantum Theory Needs No ‘Interpretation’ , 2000 .

[33]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[34]  E. Lutz,et al.  Landauer's principle in the quantum regime. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Michael M. Wolf,et al.  An improved Landauer principle with finite-size corrections , 2013, 1306.4352.

[36]  Roderich Tumulka,et al.  What Is Bohmian Mechanics , 2001, Compendium of Quantum Physics.