Automatic Smoothing of the Log Periodogram

Abstract We develop an objective optimum smoothing procedure for an estimate of the log spectral density, based on smoothing the log periodogram with a smoothing spline. We call the result the optimally smoothed spline (OSS) estimate. We show that an unbiased estimate [Rcirc](λ) of the expected integrated mean square error can be obtained as a function of the smoothing, or “bandwidth” parameter λ. The smoothing parameter then is chosen as that λ that minimizes [Rcirc](λ). The degree of the smoothing spline (equivalently, the “shape” parameter of the window) also can be chosen this way. Results of some Monte Carlo experiments demonstrating the effectiveness of the method on selected examples are given.

[1]  G. Wahba Data-Based Optimal Smoothing of Orthogonal Series Density Estimates , 1981 .

[2]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[3]  Enders A. Robinson,et al.  Digital Signal Processing and Time Series Analysis , 1978 .

[4]  C. Chatfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  O. Anderson A Commentary on 'A Survey of Time Series' , 1977 .

[6]  R. Prieto-Diaz,et al.  Spectral Analysis of Natural Seismic Events Using Autoregressive Techniques , 1977, IEEE Transactions on Geoscience Electronics.

[7]  R. Lacoss,et al.  Some Geophysical Applications of Autoregressive Spectral Estimates , 1977, IEEE Transactions on Geoscience Electronics.

[8]  Richard H. Jones,et al.  Estimation of the Innovation Generalized Variance of a Multivariate Stationary Time Series , 1976 .

[9]  G. Wahba,et al.  Periodic splines for spectral density estimation: the use of cross validation for determining the degree of smoothing , 1975 .

[10]  E. Parzen Some recent advances in time series modeling , 1974 .

[11]  H. Akaike A new look at the statistical model identification , 1974 .

[12]  H. T. Davis,et al.  Periodic Splines and Spectral Estimation , 1974 .

[13]  L. H. Koopmans The spectral analysis of time series , 1974 .

[14]  Paul A. Lynn,et al.  An introduction to the analysis and processing of signals , 1973 .

[15]  R. G. Krutchkoff,et al.  Empirical Bayes Estimation , 1972 .

[16]  M. Woodroofe On Choosing a Delta-Sequence , 1970 .

[17]  H. T. Davis,et al.  Estimation of the Innovation Variance of a Stationary Time Series , 1968 .

[18]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[19]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[20]  朝倉 利光 R. B. Blackman and J. W. Tukey: The Measurement of Power Spectra, Dover Publications, Inc., New York, 1958, 208頁, 13.5×16cm, $1.85 , 1964 .

[21]  B. P. Bogert,et al.  The quefrency analysis of time series for echoes : cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking , 1963 .

[22]  E. Parzen Mathematical Considerations in the Estimation of Spectra , 1961 .

[23]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[24]  T. Teichmann,et al.  The Measurement of Power Spectra , 1960 .

[25]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[26]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .