Quantized Indexing: Background Information *

This report presents background material ‡ for the Quantized Indexing § (QI) form of enumerative coding. Following the introduction to conventional enumerative coding and its reformulation as lattice walks, the relations between arithmetic and enumerative coding are explored. In addition to examining the fundamental origins of the performance differences (in speed and output size), special emphasis was on the distinctions in the two approaches to modeling. General modeling pattern for enumerative coding (including QI) is described, along with the special cases for finite order Markov sources. This approach is compared to the arithmetic coder adaptive modeling as well as to the grammer and dictionary based modeling methods.

[1]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[2]  J. Pieter M. Schalkwijk,et al.  An algorithm for source coding , 1972, IEEE Trans. Inf. Theory.

[3]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[4]  John C. Lawrence A new universal coding scheme for the binary memoryless source , 1977, IEEE Trans. Inf. Theory.

[5]  Yoram Bresler,et al.  Tree Source Identification with the Burrows Wheeler Transform , 2000 .

[6]  Glen G. Langdon,et al.  Universal modeling and coding , 1981, IEEE Trans. Inf. Theory.

[7]  B. Ryabko,et al.  Hausdorff dimension as a new dimension in source coding and predicting , 1999, Proceedings of the 1999 IEEE Information Theory and Communications Workshop (Cat. No. 99EX253).

[8]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[9]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[10]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[11]  Jaakko Astola,et al.  Efficient encoding of the significance maps in wavelet based image compression , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[12]  Raphail E. Krichevsky,et al.  The performance of universal encoding , 1981, IEEE Trans. Inf. Theory.

[13]  Lee D. Davisson,et al.  Universal Source Coding , 1975 .

[14]  N. Jesper Larsson Structures of String Matching and Data Compression , 1999 .

[15]  Neri Merhav,et al.  Universal prediction of individual sequences , 1992, IEEE Trans. Inf. Theory.

[16]  B. Ryabko Fast enumerative source coding , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[17]  Ian H. Witten,et al.  Arithmetic coding revisited , 1998, TOIS.

[18]  Meir Feder,et al.  A universal finite memory source , 1995, IEEE Trans. Inf. Theory.

[19]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[20]  Avideh Zakhor,et al.  Binary combinatorial coding , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[21]  T. J. Lynch,et al.  Sequence time coding for data compression , 1966 .

[22]  Gadiel Seroussi,et al.  Sequential prediction and ranking in universal context modeling and data compression , 1997, IEEE Trans. Inf. Theory.

[23]  Frank Ruskey,et al.  Ranking and unranking permutations in linear time , 2001, Inf. Process. Lett..

[24]  Thomas M. Cover,et al.  Universal Source Coding , 2005 .

[25]  Michael Drmota,et al.  Precise average redundancy of an idealized arithmetic coding , 2002, Proceedings DCC 2002. Data Compression Conference.

[26]  En-Hui Yang,et al.  Grammar-based coding: new perspectives , 2004, Information Theory Workshop.

[27]  Norman Abramson,et al.  Information theory and coding , 1963 .

[28]  En-Hui Yang,et al.  Grammar-based codes: A new class of universal lossless source codes , 2000, IEEE Trans. Inf. Theory.

[29]  Frans M. J. Willems,et al.  A universal variable-to-fixed length source code based on Lawrence's algorithm , 1992, IEEE Trans. Inf. Theory.

[30]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[31]  Jorma Rissanen,et al.  Generalized Kraft Inequality and Arithmetic Coding , 1976, IBM J. Res. Dev..

[32]  M. Nelson Data compression with the Burrows-Wheeler Transform , 1996 .

[33]  Kees A. Schouhamer Immink A practical method for approaching the channel capacity of constrained channels , 1997, IEEE Trans. Inf. Theory.

[34]  Jorma Rissanen,et al.  Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.

[35]  L. D. Davisson,et al.  Comments on "Sequence time coading for data compression" , 1966 .

[36]  Frans M. J. Willems,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[37]  Sebastian Deorowicz,et al.  Universal lossless data compression algorithms , 2003 .

[38]  J. Astola,et al.  Hierarchical enumerative coding of locally stationary binary data , 1999 .

[39]  Ian H. Witten,et al.  A comparison of enumerative and adaptive codes , 1984, IEEE Trans. Inf. Theory.

[40]  Sanjeev R. Kulkarni,et al.  Universal lossless source coding with the Burrows Wheeler Transform , 2002, IEEE Trans. Inf. Theory.