Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical Bayesian Model Based on Generalized Gaussian Priors

This paper proposes a joint segmentation and deconvolution Bayesian method for medical ultrasound (US) images. Contrary to piecewise homogeneous images, US images exhibit heavy characteristic speckle patterns correlated with the tissue structures. The generalized Gaussian distribution (GGD) has been shown to be one of the most relevant distributions for characterizing the speckle in US images. Thus, we propose a GGD-Potts model defined by a label map coupling US image segmentation and deconvolution. The Bayesian estimators of the unknown model parameters, including the US image, the label map, and all the hyperparameters are difficult to be expressed in a closed form. Thus, we investigate a Gibbs sampler to generate samples distributed according to the posterior of interest. These generated samples are finally used to compute the Bayesian estimators of the unknown parameters. The performance of the proposed Bayesian model is compared with the existing approaches via several experiments conducted on realistic synthetic data and in vivo US images.

[1]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[2]  Cishen Zhang,et al.  A blind deconvolution approach to ultrasound imaging , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[3]  M. Oelze,et al.  Improved parameter estimates based on the homodyned K distribution , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  A. Tannenbaum,et al.  Despeckling of medical ultrasound images , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[7]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[8]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[9]  Mickael Tanter,et al.  Ultrafast imaging in biomedical ultrasound , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[10]  Gabriel Rilling,et al.  Empirical mode decomposition as a filter bank , 2004, IEEE Signal Processing Letters.

[11]  José M. Bioucas-Dias,et al.  Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors , 2006, IEEE Transactions on Image Processing.

[12]  James G. Nagy,et al.  Fast iterative image restoration with a spatially varying PSF , 1997, Optics & Photonics.

[13]  Michael Unser,et al.  Joint image reconstruction and segmentation using the Potts model , 2014, 1405.5850.

[14]  Oleg V. Michailovich,et al.  Blind Deconvolution of Medical Ultrasound Images: A Parametric Inverse Filtering Approach , 2007, IEEE Transactions on Image Processing.

[15]  Aggelos K. Katsaggelos,et al.  Digital image restoration , 2012, IEEE Signal Process. Mag..

[16]  Jean-Yves Tourneret,et al.  Estimating the Granularity Coefficient of a Potts-Markov Random Field Within a Markov Chain Monte Carlo Algorithm , 2012, IEEE Transactions on Image Processing.

[17]  R. Jirik,et al.  Two-dimensional blind Bayesian deconvolution of medical ultrasound images , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  Alfred O. Hero,et al.  A Survey of Stochastic Simulation and Optimization Methods in Signal Processing , 2015, IEEE Journal of Selected Topics in Signal Processing.

[19]  Raymond H. Chan,et al.  A Two-Stage Image Segmentation Method for Blurry Images with Poisson or Multiplicative Gamma Noise , 2014, SIAM J. Imaging Sci..

[20]  Zoubin Ghahramani,et al.  MCMC for Doubly-intractable Distributions , 2006, UAI.

[21]  Jean-Yves Tourneret,et al.  Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical Bayesian Model Based on Generalized Gaussian Priors. , 2016, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[22]  J. Ng,et al.  Wavelet restoration of medical pulse-echo ultrasound images in an EM framework , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  Gersende Fort,et al.  A Shrinkage-Thresholding Metropolis Adjusted Langevin Algorithm for Bayesian Variable Selection , 2013, IEEE Journal of Selected Topics in Signal Processing.

[24]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[25]  A B Brill,et al.  Elastic Moduli of Thyroid Tissues under Compression , 2005, Ultrasonic imaging.

[26]  T. Taxt,et al.  Restoration of medical ultrasound images using two-dimensional homomorphic deconvolution , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  A. Austeng,et al.  Applying Thomson's multitaper approach to reduce speckle in medical ultrasound imaging , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  Tony F. Chan,et al.  Mumford and Shah Model and Its Applications to Image Segmentation and Image Restoration , 2015, Handbook of Mathematical Methods in Imaging.

[29]  B M Asl,et al.  Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[30]  Martino Alessandrini,et al.  Expectation Maximization for Joint Deconvolution and Statistics Estimation , 2011 .

[31]  Max Mignotte,et al.  A segmentation-based regularization term for image deconvolution , 2006, IEEE Transactions on Image Processing.

[32]  J A Jensen,et al.  Deconvolution of in-vivo ultrasound B-mode images. , 1993, Ultrasonic imaging.

[33]  Amel Benazza-Benyahia,et al.  A hierarchical Bayesian model for frame representation , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[34]  Ole Marius Hoel Rindal,et al.  Understanding contrast improvements from capon beamforming , 2014, 2014 IEEE International Ultrasonics Symposium.

[35]  Oleg V. Michailovich,et al.  A novel approach to the 2-D blind deconvolution problem in medical ultrasound , 2005, IEEE Transactions on Medical Imaging.

[36]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .

[37]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[38]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[39]  Ali Mohammad-Djafari,et al.  Joint image restoration and segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation , 2009, ICIP.

[40]  Jean-Yves Tourneret,et al.  Blind Deconvolution of Sparse Pulse Sequences Under a Minimum Distance Constraint: A Partially Collapsed Gibbs Sampler Method , 2012, IEEE Transactions on Signal Processing.

[41]  J. Alison Noble,et al.  Ultrasound image segmentation: a survey , 2006, IEEE Transactions on Medical Imaging.

[42]  J. M. Sanz-Serna,et al.  Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.

[43]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[44]  J. Alison Noble,et al.  Nakagami imaging with small windows , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[45]  Dianne P. O'Leary,et al.  Restoring Images Degraded by Spatially Variant Blur , 1998, SIAM J. Sci. Comput..

[46]  K. Boone,et al.  Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study , 1996, Medical and Biological Engineering and Computing.

[47]  Marcelo Pereyra,et al.  Proximal Markov chain Monte Carlo algorithms , 2013, Statistics and Computing.

[48]  Ivo F. Sbalzarini,et al.  Coupling Image Restoration and Segmentation: A Generalized Linear Model/Bregman Perspective , 2013, International Journal of Computer Vision.

[49]  Nahum Kiryati,et al.  Variational Pairing of Image Segmentation and Blind Restoration , 2004, ECCV.

[50]  Arthur Gretton,et al.  Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees , 2011, AISTATS.

[51]  O. Basset,et al.  A restoration framework for ultrasonic tissue characterization , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[52]  Atam P. Dhawan,et al.  Medical Image Analysis , 2003 .

[53]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[54]  D. Friboulet,et al.  Statistical Modeling of the Radio-Frequency Signal for Partially- and Fully-Developed Speckle Based on a Generalized Gaussian Model with Application to Echocardiography , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[55]  Martino Alessandrini,et al.  Statistical methods for analysis and processing ofmedical ultrasound: applications to segmentation and restoration , 2011 .

[56]  Ali Mohammad-Djafari,et al.  Joint NDT Image Restoration and Segmentation Using Gauss–Markov–Potts Prior Models and Variational Bayesian Computation , 2009, IEEE Transactions on Image Processing.

[57]  G. Farhat,et al.  Diagnostic ultrasound Imaging : Inside out , 2004 .

[58]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[59]  Jean-Yves Tourneret,et al.  Segmentation of Skin Lesions in 2-D and 3-D Ultrasound Images Using a Spatially Coherent Generalized Rayleigh Mixture Model , 2012, IEEE Transactions on Medical Imaging.

[60]  Murat Alparslan Gungor,et al.  The homogeneity map method for speckle reduction in diagnostic ultrasound images , 2015 .

[61]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[62]  K. Siddaraju,et al.  DIGITAL IMAGE RESTORATION , 2011 .

[63]  Jean-Yves Tourneret,et al.  Restoration of ultrasound images using a hierarchical Bayesian model with a generalized Gaussian prior , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[64]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[65]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[66]  J. Arendt Paper presented at the 10th Nordic-Baltic Conference on Biomedical Imaging: Field: A Program for Simulating Ultrasound Systems , 1996 .