Depolarized GABAergic Signaling in Subicular Microcircuits Mediates Generalized Seizure in Temporal Lobe Epilepsy

Secondary generalized seizure (sGS) is a major source of disability in temporal lobe epilepsy (TLE) with unclear cellular/circuit mechanisms. Here we found that clinical TLE patients with sGS showed reduced volume specifically in the subiculum compared with those without sGS. Further, using optogenetics and extracellular electrophysiological recording in mouse models, we found that photoactivation of subicular GABAergic neurons retarded sGS acquisition by inhibiting the firing of pyramidal neurons. Once sGS had been stably acquired, photoactivation of GABAergic neurons aggravated sGS expression via depolarized GABAergic signaling. Subicular parvalbumin, but not somatostatin subtype GABAergic, neurons were easily depolarized in sGS expression. Finally, photostimulation of subicular pyramidal neurons genetically targeted with proton pump Arch, rather than chloride pump NpHR3.0, alleviated sGS expression. These results demonstrated that depolarized GABAergic signaling in subicular microcircuit mediates sGS in TLE. This may be of therapeutic interest in understanding the pathological neuronal circuitry underlying sGS. VIDEO ABSTRACT.

[1]  I. Soltesz,et al.  On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy , 2013, Nature Communications.

[2]  R. Racine Modification of seizure activity by electrical stimulation: cortical areas. , 1975, Electroencephalography and clinical neurophysiology.

[3]  R. Miles,et al.  Cortical GABAergic excitation contributes to epileptic activities around human glioma , 2014, Science Translational Medicine.

[4]  David M. Himes,et al.  Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study , 2013, The Lancet Neurology.

[5]  M. Kokaia,et al.  Global Optogenetic Activation of Inhibitory Interneurons during Epileptiform Activity , 2014, The Journal of Neuroscience.

[6]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[7]  M. Avoli,et al.  Subiculum network excitability is increased in a rodent model of temporal lobe epilepsy , 2006, Hippocampus.

[8]  F. Jensen,et al.  NKCC1 transporter facilitates seizures in the developing brain , 2005, Nature Medicine.

[9]  N. Akaike,et al.  Gramicidin‐perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride. , 1995, The Journal of physiology.

[10]  I. Soltesz,et al.  Cerebellar Directed Optogenetic Intervention Inhibits Spontaneous Hippocampal Seizures in a Mouse Model of Temporal Lobe Epilepsy , 2014, eNeuro.

[11]  A. Szűcs,et al.  Thalamic lesion and epilepsy with generalized seizures, ESES and spike-wave paroxysms—Report of three cases , 2006, Seizure.

[12]  Wolfgang Löscher,et al.  Animal Models of Limbic Epilepsies: What Can They Tell Us? , 2002, Brain pathology.

[13]  Claudio Rivera,et al.  Cation-Chloride Cotransporters and Neuronal Function , 2009, Neuron.

[14]  Jeanne T Paz,et al.  Microcircuits and their interactions in epilepsy: is the focus out of focus? , 2015, Nature Neuroscience.

[15]  A. Ebner,et al.  Secondarily generalized seizures in temporal lobe epilepsy , 2012, Epilepsia.

[16]  R. Miles,et al.  Cortical inhibition, pH and cell excitability in epilepsy: what are optimal targets for antiepileptic interventions? , 2013, The Journal of physiology.

[17]  S. Wang,et al.  Unilateral low-frequency stimulation of central piriform cortex inhibits amygdaloid-kindled seizures in Sprague–Dawley rats , 2007, Neuroscience.

[18]  Y. Ben-Ari,et al.  Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies , 2005, Trends in Neurosciences.

[19]  Y. Zang,et al.  Altered baseline brain activity differentiates regional mechanisms subserving biological and psychological alterations in obese men , 2015, Scientific Reports.

[20]  Yi Wang,et al.  Wide therapeutic time-window of low-frequency stimulation at the subiculum for temporal lobe epilepsy treatment in rats , 2012, Neurobiology of Disease.

[21]  D. Nair,et al.  Epilepsy , 1977, Journal of Neurology.

[22]  Dieter Schmidt,et al.  New avenues for anti-epileptic drug discovery and development , 2013, Nature Reviews Drug Discovery.

[23]  S. O’Mara,et al.  The subiculum: a review of form, physiology and function , 2001, Progress in Neurobiology.

[24]  Carl E Stafstrom,et al.  The Role of the Subiculum in Epilepsy and Epileptogenesis , 2005, Epilepsy currents.

[25]  Thomas J. Davidson,et al.  Bidirectional Control of Generalized Epilepsy Networks via Rapid Real-Time Switching of Firing Mode , 2017, Neuron.

[26]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[27]  Song-Lin Ding,et al.  Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent , 2013, The Journal of comparative neurology.

[28]  Mark R. Bower,et al.  Do Seizures in the Pilocarpine Model Start in the Hippocampal Formation? , 2014, Epilepsy currents.

[29]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[30]  J. H. Cross,et al.  Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009 , 2010, Epilepsia.

[31]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[32]  J. Konsman The mouse brain in stereotaxic coordinates Second Edition (Deluxe) By Paxinos G. and Franklin, K.B.J., Academic Press, New York, 2001, ISBN 0-12-547637-X , 2003, Psychoneuroendocrinology.

[33]  N. Schuff,et al.  Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T , 2007, Neurobiology of Aging.

[34]  M. Kokaia,et al.  Novel approaches to epilepsy treatment , 2013, Epilepsia.

[35]  W. Löscher,et al.  Disease-Modifying Effects of Phenobarbital and the NKCC1 Inhibitor Bumetanide in the Pilocarpine Model of Temporal Lobe Epilepsy , 2010, The Journal of Neuroscience.

[36]  Karl Deisseroth,et al.  Optogenetic control of epileptiform activity , 2009, Proceedings of the National Academy of Sciences.

[37]  Christian Wozny,et al.  Synaptic plasticity in the subiculum , 2009, Progress in Neurobiology.

[38]  Yi Wang,et al.  Low-frequency stimulation in anterior nucleus of thalamus alleviates kainate-induced chronic epilepsy and modulates the hippocampal EEG rhythm , 2016, Experimental Neurology.

[39]  Neela K. Codadu,et al.  The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity , 2015, The Journal of Neuroscience.

[40]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[41]  Gabriella Panuccio,et al.  Cell Type-Specific Properties of Subicular GABAergic Currents Shape Hippocampal Output Firing Mode , 2012, PloS one.

[42]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[43]  J. Engel Mesial Temporal Lobe Epilepsy: What Have We Learned? , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[44]  George J Augustine,et al.  Progressive NKCC1-Dependent Neuronal Chloride Accumulation during Neonatal Seizures , 2010, The Journal of Neuroscience.

[45]  S. Moshé,et al.  Hippocampal sclerosis revisited , 1998, Brain and Development.

[46]  R. Miles,et al.  The subiculum comes of age , 2006, Hippocampus.

[47]  Otto W Witte,et al.  Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy. , 2008, Brain : a journal of neurology.

[48]  K. Arima,et al.  Altered Distribution of KCC2 in Cortical Dysplasia in Patients with Intractable Epilepsy , 2007, Epilepsia.

[49]  B. Roth,et al.  DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. , 2015, Annual review of pharmacology and toxicology.

[50]  Joshua E. Motelow,et al.  Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. , 2009, Brain : a journal of neurology.

[51]  M. Bialer,et al.  Key factors in the discovery and development of new antiepileptic drugs , 2010, Nature Reviews Drug Discovery.

[52]  Anton Chizhov,et al.  Reduced Efficacy of the KCC2 Cotransporter Promotes Epileptic Oscillations in a Subiculum Network Model , 2016, The Journal of Neuroscience.

[53]  Feng Zhang,et al.  Channelrhodopsin-2 and optical control of excitable cells , 2006, Nature Methods.

[54]  R. Racine,et al.  Kindling: basic mechanisms and clinical validity. , 1990, Electroencephalography and clinical neurophysiology.

[55]  I G Zubal,et al.  Clinical use of ictal SPECT in secondarily generalized tonic-clonic seizures. , 2009, Brain : a journal of neurology.

[56]  Ivan Cohen,et al.  Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum , 2015, Front. Neural Circuits.

[57]  Sudhir Sivakumaran,et al.  Bumetanide reduces seizure progression and the development of pharmacoresistant status epilepticus , 2016, Epilepsia.

[58]  C. Akerman,et al.  Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission , 2012, Nature Neuroscience.

[59]  Bo Jin,et al.  Postictal generalized EEG suppression after generalized convulsive seizures: A double-edged sword , 2016, Clinical Neurophysiology.

[60]  G. Fishell,et al.  Mechanisms of inhibition within the telencephalon: "where the wild things are". , 2011, Annual review of neuroscience.

[61]  R. S. Sloviter,et al.  Translamellar Disinhibition in the Rat Hippocampal Dentate Gyrus after Seizure-Induced Degeneration of Vulnerable Hilar Neurons , 2004, The Journal of Neuroscience.

[62]  R. Miles,et al.  Chloride homeostasis and GABA signaling in temporal lobe epilepsy , 2010 .

[63]  M. Kramer,et al.  Pyramidal cells accumulate chloride at seizure onset , 2012, Neurobiology of Disease.

[64]  Margaret Fahnestock,et al.  Kindling and status epilepticus models of epilepsy: rewiring the brain , 2004, Progress in Neurobiology.

[65]  M. Curtis,et al.  Interictal spikes in focal epileptogenesis , 2001, Progress in Neurobiology.

[66]  Philippe Ryvlin,et al.  Epilepsy: new advances , 2015, The Lancet.

[67]  R. Racine,et al.  Modification of seizure activity by electrical stimulation. II. Motor seizure. , 1972, Electroencephalography and clinical neurophysiology.

[68]  K. Deisseroth,et al.  Optogenetic investigation of neural circuits underlying brain disease in animal models , 2012, Nature Reviews Neuroscience.

[69]  E. Halgren,et al.  Properties of in vivo interictal spike generation in the human subiculum. , 2008, Brain : a journal of neurology.

[70]  G. Feng,et al.  Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function , 2011, Nature Methods.

[71]  L Forsgren,et al.  Incidence and Clinical Characterization of Unprovoked Seizures in Adults: A Prospective Population‐Based Study , 1996, Epilepsia.

[72]  M. Nicolelis,et al.  Remote Control of Neuronal Activity in Transgenic Mice Expressing Evolved G Protein-Coupled Receptors , 2009, Neuron.

[73]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[74]  J. Csicsvari,et al.  Ensemble Patterns of Hippocampal CA3-CA1 Neurons during Sharp Wave–Associated Population Events , 2000, Neuron.

[75]  R. Miles,et al.  Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy , 2011, Nature Neuroscience.

[76]  M. Mirski,et al.  Interruption of the mammillothalamic tract prevents seizures in guinea pigs. , 1984, Science.