Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans

[1]  C. S. Irving,et al.  Effect of solvent polarizability on the absorption spectrum of all-trans-retinylpyrrolidiniminium perchlorate. , 1969, Journal of the American Chemical Society.

[2]  P. E. Blatz,et al.  Anion-induced wavelength regulation of absorption maxima of Schiff bases of retinal. , 1972, Biochemistry.

[3]  L. Salem,et al.  Conversion of a photon to an electrical signal by sudden polarisation in the N-retinylidene visual chromophore , 1975, Nature.

[4]  L. Stryer,et al.  Retinal has a highly dipolar vertically excited singlet state: implications for vision. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[5]  G. J. Perreault,et al.  Observation of light emission from a rhodopsin , 1976, Nature.

[6]  R. Callender,et al.  Resonance Raman studies of the purple membrane. , 1977, Biochemistry.

[7]  A. Lewis,et al.  The molecular mechanism of excitation in visual transduction and bacteriorhodopsin. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Oesterhelt,et al.  Specificity of the retinal binding site of bacteriorhodopsin: chemical and stereochemical requirements for the binding of retinol and retinal. , 1978, Biochemistry.

[9]  M. Sheves,et al.  CC Stretching Frequencies in Model Compounds of the Protonated Retinal Schiff Base , 1984 .

[10]  R G Griffin,et al.  Solid-state 13C NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. , 1985, Biochemistry.

[11]  M. Sheves,et al.  Primary photochemical event in bacteriorhodopsin: study with artificial pigments , 1985 .

[12]  M. Sheves,et al.  Model compounds for the study of spectroscopic properties of visual pigments and bacteriorhodopsin , 1985 .

[13]  M. Sheves,et al.  Alteration of pKa of the bacteriorhodopsin protonated Schiff base. A study with model compounds , 1986 .

[14]  M. Sheves,et al.  Factors affecting the C = N stretching in protonated retinal Schiff base: a model study for bacteriorhodopsin and visual pigments. , 1987, Biochemistry.

[15]  L. Loew,et al.  Nonlinear optical properties of potential sensitive styryl dyes. , 1988, Biophysical journal.

[16]  S. O. Smith,et al.  Structure and protein environment of the retinal chromophore in light- and dark-adapted bacteriorhodopsin studied by solid-state NMR. , 1989, Biochemistry.

[17]  A. Lewis,et al.  Determination of the absolute orientation of the retinylidene chromophore in purple membrane by a second-harmonic interference technique. , 1989, Biophysical journal.

[18]  Jung Y. Huang,et al.  Second-harmonic generation in purple membrane−poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412 , 1989 .

[19]  Shen,et al.  In situ determination of induced dipole moments of pure and membrane-bound retinal chromophores. , 1989, Physical review. A, General physics.

[20]  S. O. Smith,et al.  Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. , 1990 .

[21]  R. Birge,et al.  Two‐photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low‐lying 1A*−g‐like and 1B*+u‐like π, π* states , 1990 .

[22]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[23]  Seth R. Marder,et al.  Materials for Nonlinear Optics Chemical Perspectives , 1991 .

[24]  M. Sheves,et al.  Carbon-13 NMR studies of model compounds for bacteriorhodopsin: factors affecting the retinal chromophore chemical shifts and absorption maximum , 1992 .

[25]  E. Hendrickx,et al.  Nonlinear Optical Properties of Proteins Measured by Hyper-Rayleigh Scattering in Solution , 1993, Science.

[26]  L M Loew,et al.  Probing membrane potential with nonlinear optics. , 1993, Biophysical journal.

[27]  Toshikuni Kaino,et al.  Organic materials for nonlinear optics , 1993 .

[28]  M. Sheves,et al.  A comparison of the second harmonic generation from light-adapted, dark-adapted, blue, and acid purple membrane. , 1994, Biophysical journal.

[29]  Seth R. Marder,et al.  A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes , 1994, Science.

[30]  Seth R. Marder,et al.  Large First Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond Length Alternation and Aromaticity , 1994, Science.

[31]  M. Chalfie,et al.  A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans , 1995, Neuron.

[32]  A. Lewis,et al.  Autocorrelating femtosecond pulses with thin bacteriorhodopsin films , 1995 .

[33]  M. Sheves,et al.  Probing Bacteriorhodopsin Photochemistry with Nonlinear Optics: Comparing the Second Harmonic Generation of bR and the Photochemically Induced Intermediate K , 1995 .

[34]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[35]  Michal Linial,et al.  Gigantic optical non‐linearities from nanoparticle‐enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems , 1996 .

[36]  Q. Zhong,et al.  Reexamining the Primary Light-Induced Events in Bacteriorhodopsin Using a Synthetic C13C14-Locked Chromophore , 1996 .

[37]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[38]  J. Weaver,et al.  Energetic constraints on the creation of cell membrane pores by magnetic particles. , 1996, Biophysical journal.

[39]  S W Hell,et al.  Far‐field fluorescence microscopy with three‐dimensional resolution in the 100‐nm range , 1997, Journal of microscopy.

[40]  M. Sheves,et al.  Microsecond atomic force sensing of protein conformational dynamics: implications for the primary light-induced events in bacteriorhodopsin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E. Pebay-Peyroula,et al.  X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. , 1997, Science.

[42]  M. Chalfie,et al.  Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  H Luecke,et al.  Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. , 1998, Science.

[44]  M Linial,et al.  Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. , 1999, Proceedings of the National Academy of Sciences of the United States of America.