Continuum-based micromechanical models for asphalt materials: Current practices & beyond

The mechanical properties of asphalt mixture are always required for the evaluation of the durability of pavements. In order to obtain these properties without conducting expensive laboratory tests and using calibrated empirical models, research studies have been carried out to develop micromechanics-based models. Continuum-based micromechanical models (CBMM), which are developed based on continuum mechanics, have increasingly been utilized to estimate the mechanical properties of asphalt materials based on the fundamental properties of individual constituents. These analytical models are expected to provide reliable predictions without the need for extensive computational facilities. Although the utilization of CBMM has been presented by several past studies, most of the studies do not provide a concise and critical review of these models. Therefore, in this paper, a complete review of CBMM was presented. Commonly used CBMM were introduced in detail and their advantages and disadvantages were discussed and compared. Comprehensive summaries and critical discussions about their current utilization and limitations for predicting the mechanical properties of asphalt materials were given. Further modifications and new development for addressing the limitations were extensively described and discussed. In the end, research challenges were highlighted and future recommendations from different perspectives were proposed.

[1]  K. Walton,et al.  The effective elastic moduli of a random packing of spheres , 1987 .

[2]  Arun Shukla,et al.  Microstructural Simulation of Asphalt Materials: Modeling and Experimental Studies , 2004 .

[3]  B. Paul PREDICTION OF ELASTIC CONSTANTS OF MULTI-PHASE MATERIALS , 1959 .

[4]  George J. Weng,et al.  Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions , 1984 .

[5]  Matthew W Witczak,et al.  Development of a New Revised Version of the Witczak E* Predictive Model for Hot Mix Asphalt Mixtures (With Discussion) , 2006 .

[6]  Zvi Hashin,et al.  Complex moduli of viscoelastic composites—I. General theory and application to particulate composites , 1970 .

[7]  C. Petit,et al.  Micromechanical modelling of bituminous materials’ complex modulus at different length scales , 2018 .

[8]  Xiang Shu,et al.  Analytical Modeling of Three-Layered HMA Mixtures , 2007 .

[9]  E. Mukandila,et al.  Modelling of cohesion and adhesion damage of seal based on dynamic shear rheometer testing , 2018 .

[10]  Graeme W. Milton,et al.  Bounds on the elastic and transport properties of two-component composites , 1982 .

[11]  H. Yin,et al.  Introduction to the Micromechanics of Composite Materials , 2016 .

[12]  Y. Kim,et al.  Microstructural Association Model for Upscaling Prediction of Asphalt Concrete Dynamic Modulus , 2013 .

[13]  Y. Richard Kim,et al.  Effect of volumetric factors on the mechanical behavior of asphalt fine aggregate matrix and the relationship to asphalt mixture properties , 2013 .

[14]  Ala R. Abbas,et al.  Micromechanical Modeling of the Viscoelastic Behavior of Asphalt Mixtures Using the Discrete-Element Method , 2007 .

[15]  P. Rigden The use of fillers in bituminous road surfacings. A study of filler‐binder systems in relation to filler characteristics , 1947 .

[16]  R. Mclaughlin A study of the differential scheme for composite materials , 1977 .

[17]  R. Roque,et al.  EVALUATION OF EMPIRICAL AND THEORETICAL MODELS TO DETERMINE ASPHALT MIXTURE STIFFNESSES AT LOW TEMPERATURES (WITH DISCUSSION) , 1996 .

[18]  Han Zhu,et al.  Contact based analysis of asphalt pavement with the effect of aggregate angularity , 2000 .

[19]  A. Scarpas,et al.  Microstructural Analysis of Porous Asphalt Concrete Mix Subjected to Rolling Truck Tire Loads , 2016 .

[20]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[21]  Jiann-Wen Ju,et al.  Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities , 1994 .

[22]  S. Ahmed,et al.  A review of particulate reinforcement theories for polymer composites , 1990 .

[23]  Roman Lackner,et al.  Is Low-Temperature Creep of Asphalt Mastic Independent of Filler Shape and Mineralogy?—Arguments from Multiscale Analysis , 2005 .

[24]  S. Boucher On the Effective Moduli of Isotropic Two-Phase Elastic Composites , 1974 .

[25]  Nick Thom,et al.  Effect of Aggregate Gradation on the Stiffness of Asphalt Mixtures , 2015 .

[26]  Reynaldo Roque,et al.  Uncompacted Void Content of Fine Aggregate as Quality Indicator of Materials Used in Superpave Mixtures , 2000 .

[27]  M. Taya On Stiffness and Strength of an Aligned Short-Fiber Reinforced Composite Containing Penny-Shaped Cracks in the Matrix , 1981 .

[28]  Matthew W. Witczak,et al.  Revised Predictive Model for Dynamic (Complex) Modulus of Asphalt Mixtures , 1996 .

[29]  P Uge,et al.  A NEW METHOD OF PREDICTING THE STIFFNESS OF ASPHALT PAVING MIXTURES , 1977 .

[30]  A. Norris A differential scheme for the effective moduli of composites , 1985 .

[31]  Amos Nur,et al.  Effective properties of cemented granular materials , 1994 .

[32]  Ching S. Chang,et al.  Initial moduli of particulated mass with frictional contacts , 1989 .

[33]  D. Bland,et al.  The Theory of Linear Viscoelasticity , 2016 .

[34]  L. E. Nielsen,et al.  Viscosity of Dispersed and Aggregated Suspensions of Spheres , 1968 .

[35]  L. Walpole On bounds for the overall elastic moduli of inhomogeneous systems—I , 1966 .

[36]  Hong Zhang,et al.  Issues in the Prediction of the Mechanical Properties of Open Graded Mixes , 2018, Transportation Research Record: Journal of the Transportation Research Board.

[37]  H. Yin,et al.  Elastic modelling of periodic composites with particle interactions , 2005 .

[38]  Roman Lackner,et al.  Generalized self-consistent scheme for upscaling of viscoelastic properties of highly-filled matrix-inclusion composites – Application in the context of multiscale modeling of bituminous mixtures , 2012 .

[39]  J Craus,et al.  SOME PHYSICO-CHEMICAL ASPECTS OF THE EFFECT AND THE ROLE OF THE FILLER IN BITUMINOUS PAVING MIXTURES , 1978 .

[40]  Dallas N. Little,et al.  Linear Viscoelastic Analysis of Asphalt Mastics , 2004 .

[41]  M. J. Chen,et al.  Evaluation of the development of aggregate packing in porous asphalt mixture using discrete element method simulation , 2017 .

[42]  Lawrence E. Nielsen,et al.  Dynamic mechanical properties of particulate‐filled composites , 1970 .

[43]  E. Garboczi,et al.  The Microstructure of Portland Cement-Based Materials: Computer Simulation and Percolation Theory , 1998 .

[44]  R. Roscoe The viscosity of suspensions of rigid spheres , 1952 .

[45]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[46]  J. Füssl,et al.  Multiscale fatigue model for bituminous mixtures , 2011 .

[47]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[48]  G. Milton Concerning bounds on the transport and mechanical properties of multicomponent composite materials , 1981 .

[49]  William G. Buttlar,et al.  Understanding Asphalt Mastic Behavior Through Micromechanics , 1999 .

[50]  Henrik Stang,et al.  Study of the internal mechanical response of an asphalt mixture by 3-D discrete element modeling , 2015 .

[51]  Roman Lackner,et al.  Multiscale Prediction of Viscoelastic Properties of Asphalt Concrete , 2009 .

[52]  Liang Li,et al.  Virtual testing of asphalt mixture with two-dimensional and three-dimensional random aggregate structures , 2017 .

[53]  Richard M. Christensen,et al.  A critical evaluation for a class of micro-mechanics models , 1990 .

[54]  Kiyohisa Takahashi,et al.  Analysis of the Thermal Expansion Coefficients of Particle-Filled Polymers , 1980 .

[55]  Xiang Shu,et al.  Dynamic Modulus Prediction of HMA Mixtures Based on the Viscoelastic Micromechanical Model , 2008 .

[56]  T. Ma,et al.  Heterogeneity effect of mechanical property on creep behavior of asphalt mixture based on micromechanical modeling and virtual creep test , 2017 .

[57]  Xing Cai,et al.  Identification of microstructural characteristics in semi-flexible pavement material using micromechanics and nano-techniques , 2020 .

[58]  Kumar Anupam,et al.  Study of Cornering Maneuvers of a Pneumatic Tire on Asphalt Pavement Surfaces Using the Finite Element Method , 2014 .

[59]  Zvi Hashin,et al.  On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry , 1965 .

[60]  Y. Kim,et al.  A four phase micro-mechanical model for asphalt mastic modulus , 2014 .

[61]  N. Phan-Thien,et al.  NEW THIRD-ORDER BOUNDS ON THE EFFECTIVE MODULI OF N-PHASE COMPOSITES. , 1983 .

[62]  P. Mele,et al.  Interface and mechanical coupling effects in model particulate composites , 1997 .

[63]  Yu Liu,et al.  Discrete element modeling of realistic particle shapes in stone-based mixtures through MATLAB-based imaging process , 2017 .

[64]  Su-Seng Pang,et al.  Elastic Modulus Prediction of Asphalt Concrete , 1999 .

[65]  Ching S. Chang,et al.  RHEOLOGICAL MODELING OF RANDOMLY PACKED GRANULES WITH VISCO-ELASTIC BINDERS OF MAXWELL TYPE , 1997 .

[66]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[67]  Hussain U Bahia,et al.  Modelling of Asphalt Mastic in Terms of Filler-Bitumen Interaction , 2010 .

[68]  J. C. Petersen,et al.  Unique Effects of Hydrated Lime Filler on the Performance-Related Properties of Asphalt Cements: Physical and Chemical Interactions Revisited , 2005 .

[69]  P. Mele,et al.  Viscoelasticity of polymers filled by rigid or soft particles: Theory and experiment , 1996 .

[70]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[71]  Dallas N. Little,et al.  Micromechanical modeling of the influence of material properties on moisture-induced damage in asphalt mixtures , 2010 .

[72]  Jorge Barbosa Soares,et al.  Multiscale Modeling to Predict Mechanical Behavior of Asphalt Mixtures , 2010 .

[73]  A. Scarpas,et al.  Effect of stone-on-stone contact on porous asphalt mixes: micromechanical analysis , 2020, International Journal of Pavement Engineering.

[74]  R. Kohn,et al.  Variational bounds on the effective moduli of anisotropic composites , 1988 .

[75]  C K Kang,et al.  The effect of microstructure on the rheological properties of blood. , 1976, Bulletin of mathematical biology.

[76]  B. Underwood,et al.  Multiscale Constitutive Modeling of Asphalt Concrete. , 2011 .

[77]  T. Pellinen,et al.  HIRSCH MODEL FOR ESTIMATING THE MODULUS OF ASPHALT CONCRETE , 2003 .

[78]  Xiang Shu,et al.  Micromechanics-based dynamic modulus prediction of polymeric asphalt concrete mixtures , 2008 .

[79]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[80]  Zvi Hashin,et al.  Viscoelastic Behavior of Heterogeneous Media , 1965 .

[81]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[82]  Jeff W. Rish,et al.  Normal and tangential compliance for conforming binder contact II: Visco-elastic binder , 1996 .

[83]  André Zaoui,et al.  n-Layered inclusion-based micromechanical modelling , 1993 .

[84]  Ala Abbas,et al.  Modelling asphalt mastic stiffness using discrete element analysis and micromechanics-based models , 2005 .

[85]  E. H. Kerner The Elastic and Thermo-elastic Properties of Composite Media , 1956 .

[86]  Glaucio H. Paulino,et al.  Assessment of Existing Micro-mechanical Models for Asphalt Mastics Considering Viscoelastic Effects , 2008 .

[87]  Castelo Branco,et al.  A unified method for the analysis of nonlinear viscoelasticity and fatigue cracking of asphalt mixtures using the dynamic mechanical analyzer , 2009 .

[88]  Leon Mishnaevsky,et al.  Continuum mesomechanical finite element modeling in materials development: A state-of-the-art review * , 2001 .

[89]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[90]  J. Watt,et al.  Walpole bounds on the effective elastic moduli of isotropic multicomponent composites , 1986 .

[91]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[92]  L. Nielsen Generalized Equation for the Elastic Moduli of Composite Materials , 1970 .

[93]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[94]  Emad Kassem,et al.  New Design Method of Fine Aggregate Mixtures and Automated Method for Analysis of Dynamic Mechanical Characterization Data , 2013 .

[95]  Ralph Haas,et al.  Micromechanical modelling of asphalt concrete in connection with pavement rutting problems , 1992 .

[96]  Milad Salemi,et al.  Image-aided random aggregate packing for computational modeling of asphalt concrete microstructure , 2018 .

[97]  Wei Sun,et al.  Prediction of dynamic modulus of asphalt mixture using micromechanical method with radial distribution functions , 2019, Materials and Structures.

[98]  B. Pan,et al.  Three-Dimensional Micromechanical Complex-Modulus Prediction of Asphalt Concrete Considering the Aggregate Interlocking Effect , 2017 .

[99]  David Cebon,et al.  Isolated contact model of an idealized asphalt mix , 1999 .

[100]  C. Zollinger,et al.  Application of surface energy measurements to evaluate moisture susceptibility of asphalt and aggregates , 2005 .

[101]  Tai Te Wu,et al.  The effect of inclusion shape on the elastic moduli of a two-phase material* , 1966 .

[102]  Ping Sheng,et al.  A generalized differential effective medium theory , 1985 .

[103]  A. Scarpas,et al.  Induction Heating-Assisted Compaction in Porous Asphalt Pavements: A Computational Study , 2018, Applied Sciences.

[104]  M. Beran,et al.  Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media , 1966 .

[105]  N. Shashidhar,et al.  On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics , 2002 .

[106]  Xiang Shu,et al.  Predicting Dynamic Modulus of Asphalt Mixtures with Differential Method , 2009 .

[107]  A. Scarpas,et al.  Comparison of Different Micromechanical Models for Predicting the Effective Properties of Open Graded Mixes , 2018, Transportation Research Record: Journal of the Transportation Research Board.

[108]  L. Walpole,et al.  On the overall elastic moduli of composite materials , 1969 .

[109]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[110]  J. Meegoda,et al.  Micromechanical Simulation of Hot Mix Asphalt , 1997 .

[111]  S. Umekawa,et al.  Thermal Expansions of Heterogeneous Solids Containing Aligned Ellipsoidal Inclusions , 1974 .

[112]  G. P. Tandon,et al.  The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites , 1984 .

[113]  Tsu-Wei Chou,et al.  On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: An application to a hybrid composite☆ , 1981 .

[114]  Tao Ma,et al.  Effects by property homogeneity of aggregate skeleton on creep performance of asphalt concrete , 2018 .

[115]  William G. Buttlar,et al.  Discrete Element Modeling to Predict the Modulus of Asphalt Concrete Mixtures , 2004 .

[116]  J. Hammersley Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[117]  Ching S. Chang,et al.  Estimates of Elastic Modulus for Media of Randomly Packed Granules , 1994 .

[118]  Roman Lackner,et al.  Upscaling of viscoelastic properties of highly-filled composites: Investigation of matrix–inclusion-type morphologies with power-law viscoelastic material response , 2009 .

[119]  W Heukelom,et al.  ROAD DESIGN AND DYNAMIC LOADING , 1964 .

[120]  A. Zaoui,et al.  Micromechanical modeling of packing and size effects in particulate composites , 2007 .

[121]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[122]  T. J. Hirsch,et al.  Modulus of Elasticity iof Concrete Affected by Elastic Moduli of Cement Paste Matrix and Aggregate , 1962 .

[123]  Shihui Shen,et al.  Impact of aggregate packing on dynamic modulus of hot mix asphalt mixtures using three-dimensional discrete element method , 2012 .

[124]  James G. Berryman,et al.  Long‐wavelength propagation in composite elastic media II. Ellipsoidal inclusions , 1980 .

[125]  Yong-Rak Kim,et al.  Micromechanical Model for Heterogeneous Asphalt Concrete Mixtures Subjected to Fracture Failure , 2011 .

[126]  J. Katz Hard tissue as a composite material. I. Bounds on the elastic behavior. , 1971, Journal of biomechanics.