Standard Propagation Channel Models for MIMO Communication Systems

Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, 24061 VA, USA Department of Electrical and Electronics Engineering, University of Lagos, Akoka, 100213 Lagos, Nigeria Department of Electrical and Information Engineering, Covenant University, Ota, 112233 Ogun State, Nigeria Department of Communication Engineering, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India

[1]  Mérouane Debbah,et al.  Preliminary Results on 3D Channel Modeling: From Theory to Standardization , 2013, IEEE Journal on Selected Areas in Communications.

[2]  Mehrnoush Masihpour,et al.  Magnetic induction channel models and link budgets: A comparison between two Agbinya-Masihpour models , 2010, International Conference on Communications and Electronics 2010.

[3]  W. Tuttlebee Software Defined Radio - Baseband Technology for 3G Handsets and Basestations [Book Review] , 2004 .

[4]  Andrea J. Goldsmith,et al.  Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels , 2003, IEEE Trans. Inf. Theory.

[5]  Jacob Benesty,et al.  A Two-Stage Approach to Estimate the Angles of Arrival and the Angular Spreads of Locally Scattered Sources , 2008, IEEE Transactions on Signal Processing.

[6]  Ernst Bonek,et al.  WLC06-2: Cluster-Based MIMO Channel Model Parameters Extracted from Indoor Time-Variant Measurements , 2006, IEEE Globecom 2006.

[7]  Roberto Verdone,et al.  Pervasive Mobile and Ambient Wireless Communications: COST Action 2100 , 2012 .

[8]  Henk Wymeersch,et al.  A survey on 5G massive MIMO localization , 2019, Digit. Signal Process..

[9]  Naim Dahnoun,et al.  A comparison study of 2D and 3D ITU channel model , 2013, 2013 IFIP Wireless Days (WD).

[10]  Agbotiname Lucky Imoize,et al.  Energy Efficient Design Techniques in Next-Generation Wireless Communication Networks: Emerging Trends and Future Directions , 2020, Wirel. Commun. Mob. Comput..

[11]  Robert W. Heath,et al.  Five disruptive technology directions for 5G , 2013, IEEE Communications Magazine.

[12]  Andreas F. Molisch,et al.  Clustering of scatterers in mobile radio channels-evaluation and modeling in the COST259 directional channel model , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[13]  Jari Salo,et al.  MATLAB implementation of the 3GPP Spatial Channel Model Extended (SCME) , 2006 .

[14]  Chengxiang Wang,et al.  Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments , 2020, Frontiers of Information Technology & Electronic Engineering.

[15]  Robert W. Heath,et al.  Simplified Spatial Correlation Models for Clustered MIMO Channels With Different Array Configurations , 2007, IEEE Transactions on Vehicular Technology.

[16]  Alister G. Burr,et al.  Survey of Channel and Radio Propagation Models for Wireless MIMO Systems , 2007, EURASIP J. Wirel. Commun. Netw..

[17]  Reinaldo A. Valenzuela Antennas and propagation for wireless communications , 1996, Proceedings of Vehicular Technology Conference - VTC.

[18]  C. Oestges,et al.  The COST 273 MIMO Channel Model: Three Kinds of Clusters , 2008, 2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications.

[19]  Claude Oestges,et al.  Development of multi-link geometry-based stochastic channel models , 2011, 2011 Loughborough Antennas & Propagation Conference.

[20]  Sandra Sendra,et al.  A Survey on 5G Usage Scenarios and Traffic Models , 2020, IEEE Communications Surveys & Tutorials.

[21]  Mark A. Beach,et al.  Spatial correlation in indoor MIMO channels , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[22]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[23]  Abiodun Gbenga-Ilori,et al.  Energy efficiency techniques in ultra-dense wireless heterogeneous networks: An overview and outlook , 2020 .

[24]  Frederick W. Vook,et al.  3D Extension of the 3GPP/ITU Channel Model , 2013, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).

[25]  Martine Lienard,et al.  Capacity of multi-antenna array systems in tunnel environment , 2002, Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367).

[26]  Gerhard Fettweis,et al.  Multisite field trial for LTE and advanced concepts , 2009, IEEE Communications Magazine.

[27]  Gerd Sommerkorn,et al.  Large Scale Parameter for the WINNER II Channel Model at 2.53 GHz in Urban Macro Cell , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[28]  Chunyan Feng,et al.  Advances on Exploiting Polarization in Wireless Communications: Channels, Technologies, and Applications , 2017, IEEE Communications Surveys & Tutorials.

[29]  Lassi Hentila,et al.  Elevation extension for a geometry-based radio channel model and its influence on MIMO antenna correlation and gain imbalance , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[30]  Xuefeng Yin,et al.  Cluster Characteristics in a MIMO Indoor Propagation Environment , 2007, IEEE Transactions on Wireless Communications.

[31]  Luis M. Correia Wireless flexible personalised communications : COST 259 : European co-operation in mobile radio research , 2001 .

[32]  Roberto Verdone,et al.  Pervasive Mobile and Ambient Wireless Communications , 2012 .

[33]  Sinan Gezici,et al.  Ultra-wideband Positioning Systems: Theoretical Limits, Ranging Algorithms, and Protocols , 2008 .

[34]  Martin Haardt,et al.  An introduction to the multi-user MIMO downlink , 2004, IEEE Communications Magazine.

[35]  Markus Rupp,et al.  Implementation, validation and application of the 3GPP 3D MIMO channel model in open source simulation tools , 2015, 2015 International Symposium on Wireless Communication Systems (ISWCS).

[36]  Fredrik Tufvesson,et al.  Keyhole Effect in MIMO Wireless Channels: Measurements and Theory , 2006, IEEE Trans. Wirel. Commun..

[37]  Ajay R. Mishra,et al.  Fundamentals of Network Planning and Optimisation 2G/3G/4G , 2018 .

[38]  Alon Amar,et al.  The Effect of Local Scattering on the Gain and Beamwidth of a Collaborative Beampattern for Wireless Sensor Networks , 2010, IEEE Transactions on Wireless Communications.

[39]  Jing Wang,et al.  Cognitive radio in 5G: a perspective on energy-spectral efficiency trade-off , 2014, IEEE Communications Magazine.

[40]  Jian Yu,et al.  Clustering Enabled Wireless Channel Modeling Using Big Data Algorithms , 2018, IEEE Communications Magazine.

[41]  Matthias Pätzold,et al.  A Non-Stationary MIMO Vehicle-to-Vehicle Channel Model Derived from the Geometrical Street Model , 2011, 2011 IEEE Vehicular Technology Conference (VTC Fall).

[42]  David W. Matolak,et al.  Vehicle–Vehicle Channel Models for the 5-GHz Band , 2008, IEEE Transactions on Intelligent Transportation Systems.

[43]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[44]  Xiang Cheng,et al.  Vehicle-to-vehicle channel modeling and measurements: recent advances and future challenges , 2009, IEEE Communications Magazine.

[45]  Christopher Cox,et al.  An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G Mobile Communications , 2012 .

[46]  Giuseppe Caire,et al.  Multiuser MIMO Achievable Rates With Downlink Training and Channel State Feedback , 2007, IEEE Transactions on Information Theory.

[47]  Thomas Zwick,et al.  A stochastic multipath channel model including path directions for indoor environments , 2002, IEEE J. Sel. Areas Commun..

[48]  Fredrik Tufvesson,et al.  A survey on vehicle-to-vehicle propagation channels , 2009, IEEE Wireless Communications.

[49]  Ahmed Iyanda Sulyman,et al.  Rateless Space Time Block Code for Massive MIMO Systems , 2014 .

[50]  Eldad Perahia,et al.  IEEE 802.11ad: Defining the Next Generation Multi-Gbps Wi-Fi , 2010, 2010 7th IEEE Consumer Communications and Networking Conference.

[51]  Yang Li,et al.  3D channel model in 3GPP , 2015, IEEE Communications Magazine.

[52]  Simon Haykin,et al.  Multiple-Input Multiple-Output Channel Models: Theory and Practice , 2010 .

[53]  Claude Oestges,et al.  Parameterization of the COST 2100 MIMO channel model in indoor scenarios , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[54]  Fredrik Tufvesson,et al.  WLC11-2: Propagation Channel Characteristics for Peer-to-Peer Multiple Antenna Systems at 300 MHz , 2006, IEEE Globecom 2006.

[55]  T.L. Marzetta,et al.  How Much Training is Required for Multiuser Mimo? , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[56]  Chen Jianqiao,et al.  An Overview of Non-Stationary Property for Massive MIMO Channel Modeling , 2019 .

[57]  I. Akyildiz,et al.  Propagation Modeling and Analysis of Reconfigurable Intelligent Surfaces for Indoor and Outdoor Applications in 6G Wireless Systems , 2019, ArXiv.

[58]  Thomas Zwick,et al.  The COST259 Directional Channel Model-Part I: Overview and Methodology , 2006, IEEE Transactions on Wireless Communications.

[59]  Theodore S. Rappaport,et al.  Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz , 2018, 2018 IEEE Global Communications Conference (GLOBECOM).

[60]  Alister G. Burr,et al.  A Time-Variant Wideband Spatial Channel Model Based on the 3GPP Model , 2006, IEEE Vehicular Technology Conference.

[62]  Zheng Dou,et al.  Inter-link multi-user MIMO channel capacity and the effects of clusters , 2011, 2011 IEEE 3rd International Conference on Communication Software and Networks.

[63]  Wolfgang Utschick,et al.  Stochastic transceiver design in point-to-point MIMO channels with imperfect CSI , 2011, 2011 International ITG Workshop on Smart Antennas.

[64]  Cheng-Xiang Wang,et al.  Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels , 2018, IEEE Transactions on Wireless Communications.

[65]  E. Bonek,et al.  What makes a good MIMO channel model? , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[66]  Xiqi Gao,et al.  Cellular architecture and key technologies for 5G wireless communication networks , 2014, IEEE Communications Magazine.

[67]  S. Jaeckel,et al.  QuaDRiGa: A MIMO channel model for land mobile satellite , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[68]  Martin Döttling,et al.  Radio technologies and concepts for IMT-Advanced , 2009 .

[69]  Gert Frølund Pedersen,et al.  COST 231 - Digital Mobile Radio Towards Future generation Systems , 1999 .

[70]  Morten Tolstrup Indoor Radio Planning: A Practical Guide for 2G, 3G and 4G , 2015 .

[71]  A. R. Mishra,et al.  Fundamentals of cellular network planning and optimisation - [Book Review] , 2005 .

[72]  Mathias Riback,et al.  Validation of 3GPP Spatial Channel Model Including WINNER Wideband Extension Using Measurements , 2006, IEEE Vehicular Technology Conference.

[73]  Fredrik Tufvesson,et al.  The COST 2100 Channel Model: Parameterization and Validation Based on Outdoor MIMO Measurements at 300 MHz , 2013, IEEE Transactions on Wireless Communications.

[74]  Xiqi Gao,et al.  Multi-Frequency Multi-Scenario Millimeter Wave MIMO Channel Measurements and Modeling for B5G Wireless Communication Systems , 2020, IEEE Journal on Selected Areas in Communications.

[75]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[76]  Ralf R. Müller,et al.  MIMO channel modeling and the principle of maximum entropy , 2005, IEEE Transactions on Information Theory.

[77]  Preben E. Mogensen,et al.  A stochastic MIMO radio channel model with experimental validation , 2002, IEEE J. Sel. Areas Commun..

[78]  A. L. Imoize,et al.  Propagation measurements of a 4G LTE network in Lagoon environment , 2019, Nigerian Journal of Technological Development.

[79]  Fredrik Tufvesson,et al.  Path Loss Modeling for Vehicle-to-Vehicle Communications , 2011, IEEE Transactions on Vehicular Technology.

[80]  Xiongwen Zhao,et al.  Channel Simulation and Validation by QuaDRiGa for Suburban Microcells under 6 GHz , 2018, 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE).

[81]  H. Holma,et al.  Performance of adaptive multirate (AMR) voice in GSM and WCDMA , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[82]  Reiner S. Thomä,et al.  Comparison of SCM, SCME, and WINNER Channel Models , 2007, 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring.

[83]  Sergey Andreev,et al.  Characterizing Radio Wave Propagation in Urban Street Canyon With Vehicular Blockage at 28 GHz , 2020, IEEE Transactions on Vehicular Technology.

[84]  M. Reza Soleymani,et al.  The Effect of Antenna Physics on Fading Correlation and the Capacity of Multielement Antenna Systems , 2005, IEEE Transactions on Vehicular Technology.

[85]  Steven J. Vaughan-Nichols,et al.  Achieving Wireless Broadband with WiMax , 2004, Computer.

[86]  Özgür B. Akan,et al.  A Communication Theoretical Modeling and Analysis of Underwater Magneto-Inductive Wireless Channels , 2012, IEEE Transactions on Wireless Communications.

[87]  Dusit Niyato,et al.  IEEE 802.16/WiMAX-based broadband wireless access and its application for telemedicine/e-health services , 2007, IEEE Wireless Communications.

[88]  Robert W. Brodersen,et al.  Degrees of freedom in multiple-antenna channels: a signal space approach , 2005, IEEE Transactions on Information Theory.

[89]  Bo Ai,et al.  Artificial Neural Network Based Path Loss Prediction for Wireless Communication Network , 2020, IEEE Access.

[90]  Erik G. Larsson,et al.  Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays , 2012, IEEE Signal Process. Mag..

[91]  Claude Oestges,et al.  The COST 2100 MIMO channel model , 2011, IEEE Wirel. Commun..

[92]  J. Salo,et al.  An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM) , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[93]  R. Janaswamy,et al.  Electromagnetic Degrees of Freedom in 2-D Scattering Environments , 2006, IEEE Transactions on Antennas and Propagation.

[94]  Theodore S. Rappaport,et al.  3D mmWave Channel Model Proposal , 2014, 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall).

[95]  John Scourias,et al.  An Overview of the Global System for Mobile Communications , 1995 .

[96]  Nima Razavi-Ghods,et al.  Sounders for MIMO channel measurements , 2005, 2005 13th European Signal Processing Conference.

[97]  R. Tafazolli,et al.  Ultra-Wideband Terahertz Channel Propagation Measurements from 500 to 750 GHz , 2020, 2020 International Conference on UK-China Emerging Technologies (UCET).

[98]  Claude Oestges,et al.  A physical scattering model for MIMO macrocellular broadband wireless channels , 2003, IEEE J. Sel. Areas Commun..

[100]  M. Patzold,et al.  A non-stationary MIMO vehicle-to-vehicle channel model based on the geometrical T-junction model , 2009, 2009 International Conference on Wireless Communications & Signal Processing.

[101]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[102]  A.F. Molisch,et al.  A twin-cluster MIMO channel model , 2006, 2006 First European Conference on Antennas and Propagation.

[103]  H. Bertoni,et al.  A theoretical model of UHF propagation in urban environments , 1988 .

[104]  Cheng-Xiang Wang,et al.  A Survey of 5G Channel Measurements and Models , 2018, IEEE Communications Surveys & Tutorials.

[105]  Robert W. Heath,et al.  Shifting the MIMO Paradigm , 2007, IEEE Signal Processing Magazine.

[106]  G. Calcev,et al.  Spatial channel models for multi-antenna systems , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[107]  Shlomo Shamai,et al.  On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.

[108]  Katsuyuki Haneda,et al.  Large-Scale Parameters of Spatio-Temporal Short-Range Indoor Backhaul Channels at 140 GHz , 2020, 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring).

[109]  Chung G. Kang,et al.  MIMO-OFDM Wireless Communications with MATLAB , 2010 .

[110]  Walid Saad,et al.  A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems , 2019, IEEE Network.

[111]  Andreas F. Molisch,et al.  Elevation Characteristics of Outdoor-to-Indoor Macrocellular Propagation Channels , 2014, 2014 IEEE 79th Vehicular Technology Conference (VTC Spring).

[112]  Xiaodong Wang,et al.  Space-time coding and signal processing for MIMO communications , 2003, Journal of Computer Science and Technology.

[113]  Meilong Jiang,et al.  3D channel model extensions and characteristics study for future wireless systems , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[114]  Markus Rupp,et al.  3GPP 3D MIMO channel model: a holistic implementation guideline for open source simulation tools , 2016, EURASIP J. Wirel. Commun. Netw..

[115]  H. Ozcelik,et al.  On the practical use of analytical MIMO channel models , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[116]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[117]  Emil Björnson,et al.  Massive MIMO: ten myths and one critical question , 2015, IEEE Communications Magazine.

[118]  Jan Sykora Tapped delay line model of linear randomly time-variant WSSUS channel , 2000 .

[119]  Sameer D. Trapasiya,et al.  Space Time Coding Scheme for MIMO system-Literature Survey , 2012 .

[120]  Anke Schmid,et al.  Radio Network Planning And Optimisation For Umts , 2016 .

[121]  E. Damosso Action COST 231: a commitment to the transition from GSM to UMTS , 1994, Proceedings of 1994 International Conference on Personal Wireless Communications.

[122]  Erik G. Larsson,et al.  Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems , 2011, IEEE Transactions on Communications.

[123]  Esrafil Jedari,et al.  A New Statistical Wideband Spatio-Temporal Channel Model for 5-GHz Band WLAN Systems [Comments and corrections on] , 2008, IEEE Journal on Selected Areas in Communications.

[124]  Murat Uysal,et al.  Statistical modeling of propagation channels for Terahertz band , 2017, 2017 IEEE Conference on Standards for Communications and Networking (CSCN).

[125]  Farzad Talebi Stochastic multipath modeling of wideband polarized MIMO channels , 2015 .

[126]  Luis M. Correia COST 273 - towards mobile broadband multimedia networks , 2003 .

[127]  S. Yoshida,et al.  Propagation factors controlling mean field strength on urban streets , 1984 .

[128]  Mary Ann Ingram,et al.  Measured joint Doppler-delay power profiles for vehicle-to-vehicle communications at 2.4 GHz , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[129]  Ernst Bonek,et al.  A stochastic MIMO channel model with joint correlation of both link ends , 2006, IEEE Transactions on Wireless Communications.

[130]  Mark Beach,et al.  Wideband outdoor MIMO channel model derived from directional channel measurements at 2 GHz , 2004 .

[131]  Fredrik Tufvesson,et al.  Massive MIMO channels — Measurements and models , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[132]  P.E. Mogensen,et al.  Preliminary measurement results from an adaptive antenna array testbed for GSM/UMTS , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[133]  Desmond P. Taylor,et al.  A Statistical Model for Indoor Multipath Propagation , 2007 .

[134]  Fredrik Tufvesson,et al.  Significance of common scatterers in multi-link indoor radio wave propagation , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[135]  Theodore S. Rappaport,et al.  3-D Statistical Indoor Channel Model for Millimeter-Wave and Sub-Terahertz Bands , 2020, GLOBECOM 2020 - 2020 IEEE Global Communications Conference.

[136]  Cheng-Xiang Wang,et al.  Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model , 2007, EURASIP J. Wirel. Commun. Netw..

[137]  Claude Oestges,et al.  MIMO Wireless Networks: Channels, Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems , 2013 .

[138]  Biljana Badic Advances in carrier aggregation and multi-user MIMO for LTE-advanced: Outcomes from SAMURAI project , 2012 .

[139]  Robert W. Heath,et al.  Linear Receivers in Non-Stationary Massive MIMO Channels With Visibility Regions , 2018, IEEE Wireless Communications Letters.

[140]  D. Har,et al.  Comment on diffraction loss of rooftop-to-street in COST 231-Walfisch-Ikegami model , 1999 .

[141]  Magdy F. Iskander,et al.  A ray-tracing method based on the triangular grid approach and application to propagation prediction in urban environments , 2002 .

[142]  George L. Turin,et al.  A statistical model of urban multipath propagation , 1972 .

[143]  Mérouane Debbah,et al.  Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need? , 2013, IEEE Journal on Selected Areas in Communications.

[144]  E. Bonek,et al.  The interdependence of cluster parameters in MIMO channel modeling , 2006, 2006 First European Conference on Antennas and Propagation.

[145]  Claude Oestges,et al.  Empirical Modeling of Nomadic Peer-to-Peer Networks in Office Environment , 2011, 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring).

[146]  Ertugrul Basar,et al.  Indoor and Outdoor Physical Channel Modeling and Efficient Positioning for Reconfigurable Intelligent Surfaces in mmWave Bands , 2020, IEEE Transactions on Communications.

[147]  Gerd Sommerkorn,et al.  3D-Antenna Array Model for IST-WINNER Channel Simulations , 2007, 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring.

[148]  G. Matz,et al.  On non-WSSUS wireless fading channels , 2005, IEEE Transactions on Wireless Communications.

[149]  Troels B. Sorensen,et al.  Propagation Characterization and MIMO Channel Modeling for 3G , 2004 .

[150]  Fredrik Tufvesson,et al.  Extension of the COST 2100 channel model for massive MIMO , 2015 .

[151]  Emil Björnson,et al.  Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency , 2018, Found. Trends Signal Process..

[152]  Claude Oestges,et al.  Validity of the Kronecker Model for MIMO Correlated Channels , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[153]  V. S. Abhayawardhana,et al.  Comparison of empirical propagation path loss models for fixed wireless access systems , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[154]  Akbar M. Sayeed,et al.  Deconstructing multiantenna fading channels , 2002, IEEE Trans. Signal Process..

[155]  M.A. Jensen,et al.  Experiments in modeling the space-time indoor wireless communication channel , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[156]  Claude Oestges,et al.  Spatial separation of multi-user MIMO channels , 2009, 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications.

[157]  Helmut Bölcskei,et al.  Outdoor MIMO wireless channels: models and performance prediction , 2002, IEEE Trans. Commun..

[158]  Fredrik Tufvesson,et al.  Standardization of Propagation Models: 800 MHz to 100 GHz -- A Historical Perspective , 2020, 2006.08491.

[159]  M. C. Domingo,et al.  Magnetic Induction for Underwater Wireless Communication Networks , 2012, IEEE Transactions on Antennas and Propagation.

[160]  Andreas F. Molisch,et al.  The COST 259 Directional Channel Model-Part II: Macrocells , 2006, IEEE Transactions on Wireless Communications.

[161]  Zhihua Lai,et al.  The Impact of Antenna Height on 3D Channel: A Ray Launching Based Analysis , 2018 .

[162]  S. Haykin,et al.  A Novel Wideband MIMO Channel Model and McMaster's Wideband MIMO SDR , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[163]  Michael A. Jensen,et al.  A statistical model for angle of arrival in indoor multipath propagation , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[164]  Claude Oestges Multi-link propagation modeling for beyond next generation wireless , 2011, 2011 Loughborough Antennas & Propagation Conference.

[165]  Gerd Sommerkorn,et al.  Identification of time-variant directional mobile radio channels , 2000, IEEE Trans. Instrum. Meas..

[166]  L. Smoczynski,et al.  COST Action 273 at the National Institute of Telecommunications , 2003, Proceedings of 2003 5th International Conference on Transparent Optical Networks, 2003..

[167]  Ali Abdi,et al.  A space-time correlation model for multielement antenna systems in mobile fading channels , 2002, IEEE J. Sel. Areas Commun..

[168]  S. El-Rabaie,et al.  3D Modeling and Analysis of the Space–Time Correlation for 5G Millimeter Wave MIMO Channels , 2019, Wirel. Pers. Commun..

[169]  Xuefeng Yin,et al.  Massive MIMO Channel Models: A Survey , 2014 .

[170]  Tjeng Thiang Tjhung,et al.  Tapped delay line model for band-limited multipath channel in DS-CDMA mobile radio , 2001 .

[171]  Andreas F. Molisch,et al.  A generic model for MIMO wireless propagation channels in macro- and microcells , 2004, IEEE Transactions on Signal Processing.

[172]  Joon Ho Cho,et al.  An Efficient Calibration of MIMO Channel Sounders With Internal Crosstalk , 2020, IEEE Transactions on Vehicular Technology.

[173]  M. Hata,et al.  Empirical formula for propagation loss in land mobile radio services , 1980, IEEE Transactions on Vehicular Technology.

[174]  Nihar Jindal,et al.  Multi-User Diversity vs. Accurate Channel State Information in MIMO Downlink Channels , 2012, IEEE Transactions on Wireless Communications.

[175]  Giuseppe Caire,et al.  Space-Time Coding: an Overview , 2010 .

[176]  E. Damosso,et al.  COST 231 achievements as a support to the development of UMTS: a look into the future , 1996 .

[177]  Milan Narandžić,et al.  WINNER wideband MIMO system-level channel model - comparison with other reference models , 2009 .

[178]  Xiongwen Zhao,et al.  Tapped delay line channel models at 5.3 GHz in indoor environments , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[179]  Peter Adam Hoeher,et al.  A statistical discrete-time model for the WSSUS multipath channel , 1992 .

[180]  Theodore S. Rappaport,et al.  A Millimeter-Wave Channel Simulator NYUSIM with Spatial Consistency and Human Blockage , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[181]  Jeffrey G. Andrews,et al.  Broadband wireless access with WiMax/802.16: current performance benchmarks and future potential , 2005, IEEE Communications Magazine.

[182]  Ayman Elnashar,et al.  Design, Deployment and Performance of 4G-LTE Networks: A Practical Approach , 2014 .

[183]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[184]  M. Migliore On the role of the number of degrees of freedom of the field in MIMO channels , 2006, IEEE Transactions on Antennas and Propagation.

[185]  Helmut Bölcskei,et al.  Performance of multiantenna signaling techniques in the presence of polarization diversity , 2002, IEEE Trans. Signal Process..

[186]  Chia-Chin Chong,et al.  A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems , 2003, IEEE J. Sel. Areas Commun..

[187]  Akl Charaf,et al.  Channel models in the near field , 2017, 2017 11th European Conference on Antennas and Propagation (EUCAP).

[188]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[189]  Agbotiname Lucky Imoize,et al.  Analysis of key performance indicators of a 4G LTE network based on experimental data obtained from a densely populated smart city , 2020, Data in brief.

[190]  Angela Doufexi,et al.  Efficient Multielement Ray Tracing With Site-Specific Comparisons Using Measured MIMO Channel Data , 2007, IEEE Transactions on Vehicular Technology.

[191]  A. Paulraj,et al.  Impact of diagonal correlations on MIMO capacity: application to geometrical scattering models , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[192]  Johannes M. Eckhardt,et al.  Measurements of Reflection and Penetration Losses in Low Terahertz Band Vehicular Communications , 2020, 2020 14th European Conference on Antennas and Propagation (EuCAP).

[193]  Hao Xu,et al.  A Wideband Spatial Channel Model for System-Wide Simulations , 2007, IEEE Transactions on Vehicular Technology.

[194]  Meifang Zhu,et al.  Geometry-based Radio Channel Characterization and Modeling: Parameterization, Implementation and Validation , 2014 .

[195]  Jon W. Wallace,et al.  Deficiencies of 'Kronecker' MIMO radio channel model , 2003 .

[196]  Jeffrey G. Andrews,et al.  What Will 5G Be? , 2014, IEEE Journal on Selected Areas in Communications.

[197]  David W. Matolak,et al.  Channel Modeling for Vehicle-To-Vehicle Communications , 2008, IEEE Commun. Mag..

[198]  Mansoor Shafi,et al.  Statistical Characteristics of Measured 3-Dimensional MIMO Channel for Outdoor-to-Indoor Scenario in China and New Zealand , 2016 .

[199]  Georgios B. Giannakis,et al.  On velocity estimation and correlation properties of narrow-band mobile communication channels , 2001, IEEE Trans. Veh. Technol..

[200]  Jyoteesh Malhotra,et al.  On MIMO Channel Modeling for the Mobile Wireless Systems , 2015 .

[201]  Arab Emirates,et al.  United Arab Emirates. , 2021, Department of State publication. Background notes series.

[202]  Claude Oestges,et al.  Impact of fading correlations on MIMO communication systems in geometry-based statistical channel models , 2005, IEEE Transactions on Wireless Communications.

[203]  Tiago Rosa Maria Paula Queluz,et al.  Clustering of Scatterers Over an Irregular Clutter Environment: An Extension of COST 273 MIMO Channel Model , 2007, 2007 IEEE 66th Vehicular Technology Conference.

[204]  Arogyaswami Paulraj,et al.  MIMO antenna subset selection with space-time coding , 2002, IEEE Trans. Signal Process..

[205]  Xiang Cheng,et al.  New deterministic and stochastic simulation models for non-isotropic scattering mobile-to-mobile Rayleigh fading channels , 2011, Wirel. Commun. Mob. Comput..

[206]  Xiang Cheng,et al.  Three-dimensional fading channel models: A survey of elevation angle research , 2014, IEEE Communications Magazine.

[207]  Ingrid Moerman,et al.  The History of WiMAX: A Complete Survey of the Evolution in Certification and Standardization for IEEE 802.16 and WiMAX , 2012, IEEE Communications Surveys & Tutorials.

[208]  Tiago Rosa Maria Paula Queluz,et al.  Implementation of the COST 273 Directional Channel Model in Microcell Scenarios , 2012, SIGMAP.

[209]  Agbotiname Lucky Imoize,et al.  Radial basis function neural network path loss prediction model for LTE networks in multitransmitter signal propagation environments , 2020, Int. J. Commun. Syst..

[210]  Andreas F. Molisch,et al.  Ultrawideband propagation channels-theory, measurement, and modeling , 2005, IEEE Transactions on Vehicular Technology.

[211]  Rongke Liu,et al.  Work in progress: 3D beamforming methods with user-specific elevation beamfoming , 2014, 9th International Conference on Communications and Networking in China.

[212]  Gunnar Eriksson,et al.  A study of the capacity for different element spacing on compact MIMO platforms , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[213]  Simeon Olumide Ajose,et al.  Propagation measurements and modelling at 1800 MHz in Lagos Nigeria , 2013, Int. J. Wirel. Mob. Comput..

[214]  Xiaohu You,et al.  Cooperative MIMO Channel Modeling and Multi-Link Spatial Correlation Properties , 2012, IEEE Journal on Selected Areas in Communications.

[215]  Andrea J. Goldsmith,et al.  A Measurement-Based Model for Predicting Coverage Areas of Urban Microcells , 1993, IEEE J. Sel. Areas Commun..