Field-emission from quantum-dot-in-perovskite solids
暂无分享,去创建一个
Oleksandr Voznyy | David Sinton | Sjoerd Hoogland | Min Liu | F. P. García de Arquer | O. Voznyy | E. Sargent | S. Hoogland | D. Sinton | B. Sutherland | Jixian Xu | Min Liu | Xiwen Gong | Jixian Xu | F Pelayo García de Arquer | Edward Sargent | Xiwen Gong | Brandon R Sutherland | Gi-Hwan Kim | Randy P. Sabatini | Randy P Sabatini | Yuangjie Pang | Gi-Hwan Kim | Y. Pang
[1] G. Konstantatos,et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.
[2] Mohammad Khaja Nazeeruddin,et al. Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.
[3] Yaming Yu,et al. NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells , 2014 .
[4] Edward H. Sargent,et al. Planar-integrated single-crystalline perovskite photodetectors , 2015, Nature Communications.
[5] Peng,et al. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.
[6] M. Green,et al. The emergence of perovskite solar cells , 2014, Nature Photonics.
[7] Antonio Luque,et al. Understanding intermediate-band solar cells , 2012, Nature Photonics.
[8] A. Rogalski. Infrared Detectors, Second Edition , 2010 .
[9] K. Koziol,et al. Ultra-pure single wall carbon nanotube fibres continuously spun without promoter , 2014, Scientific Reports.
[10] Aram Amassian,et al. Air-stable n-type colloidal quantum dot solids. , 2014, Nature materials.
[11] Edward H. Sargent,et al. Sensitive, Fast, and Stable Perovskite Photodetectors Exploiting Interface Engineering , 2015 .
[12] Thomas A. Kennedy,et al. Doping semiconductor nanocrystals , 2005, Nature.
[13] Paul L. Burn,et al. Electro-optics of perovskite solar cells , 2014, Nature Photonics.
[14] Qingfeng Dong,et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination , 2015, Nature Photonics.
[15] Wei Tian,et al. Recent advances in solution-processed inorganic nanofilm photodetectors. , 2014, Chemical Society reviews.
[16] Christopher H. Hendon,et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.
[17] Larissa Levina,et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.
[18] G. Konstantatos,et al. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. , 2013, ACS nano.
[19] E. Sargent,et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.
[20] Peter N. J. Dennis,et al. Infrared Detectors , 1980, Other Conferences.
[21] C. Piermarocchi,et al. Giant Up-Conversion Efficiency of InGaAs Quantum Dots in a Planar Microcavity , 2014, Scientific Reports.
[22] Albert Rose,et al. Concepts in photoconductivity and allied problems , 1963 .
[23] Vladimir Bulovic,et al. Photodetectors based on treated CdSe quantum-dot films , 2005 .
[24] Gregory D. Scholes,et al. Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .
[25] P. Guyot-Sionnest,et al. 1/f noise in semiconductor and metal nanocrystal solids , 2014 .
[26] Yang Yang,et al. Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.
[27] E. Sargent,et al. Colloidal quantum dot solar cells , 2012, Nature Photonics.
[28] Moungi G Bawendi,et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. , 2014, ACS nano.
[29] S. McGlynn,et al. Concepts in Photoconductivity and Allied Problems. , 1964 .
[30] Yanjun Fang,et al. Resolving Weak Light of Sub‐picowatt per Square Centimeter by Hybrid Perovskite Photodetectors Enabled by Noise Reduction , 2015, Advanced materials.
[31] M. Johnston,et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .
[32] R. Curry,et al. Lead sulphide nanocrystal photodetector technologies , 2016, Nature Photonics.
[33] G. Konstantatos,et al. Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.
[34] Paul L. Burn,et al. Filterless narrowband visible photodetectors , 2015, Nature Photonics.
[35] G. Konstantatos,et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.
[36] Illan J. Kramer,et al. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance , 2016, Advanced materials.
[37] Paul Meredith,et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes , 2015, Nature Communications.
[38] H. Grubin. The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.
[39] Wei Zhang,et al. Gain and recombination dynamics of quantum-dot infrared photodetectors , 2006 .
[40] J. Noh,et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.
[41] Oleksandr Voznyy,et al. Quantum-dot-in-perovskite solids , 2015, Nature.
[42] Kwong-Kit Choi,et al. Photoconductive gain and generation‐recombination noise in quantum well infrared photodetectors , 1995 .
[43] Oleksandr Voznyy,et al. Highly efficient quantum dot near-infrared light-emitting diodes , 2016, Nature Photonics.
[44] I. Ial,et al. Nature Communications , 2010, Nature Cell Biology.
[45] Paul Meredith,et al. Low Noise, IR‐Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging , 2015, Advanced materials.
[46] Oleksandr Voznyy,et al. Electronically active impurities in colloidal quantum dot solids. , 2014, ACS nano.
[47] G. Konstantatos,et al. Nanostructured materials for photon detection. , 2010, Nature nanotechnology.