Field-emission from quantum-dot-in-perovskite solids

Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

[1]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[2]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[3]  Yaming Yu,et al.  NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells , 2014 .

[4]  Edward H. Sargent,et al.  Planar-integrated single-crystalline perovskite photodetectors , 2015, Nature Communications.

[5]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[6]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[7]  Antonio Luque,et al.  Understanding intermediate-band solar cells , 2012, Nature Photonics.

[8]  A. Rogalski Infrared Detectors, Second Edition , 2010 .

[9]  K. Koziol,et al.  Ultra-pure single wall carbon nanotube fibres continuously spun without promoter , 2014, Scientific Reports.

[10]  Aram Amassian,et al.  Air-stable n-type colloidal quantum dot solids. , 2014, Nature materials.

[11]  Edward H. Sargent,et al.  Sensitive, Fast, and Stable Perovskite Photodetectors Exploiting Interface Engineering , 2015 .

[12]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[13]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[14]  Qingfeng Dong,et al.  Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination , 2015, Nature Photonics.

[15]  Wei Tian,et al.  Recent advances in solution-processed inorganic nanofilm photodetectors. , 2014, Chemical Society reviews.

[16]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[17]  Larissa Levina,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.

[18]  G. Konstantatos,et al.  Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. , 2013, ACS nano.

[19]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[20]  Peter N. J. Dennis,et al.  Infrared Detectors , 1980, Other Conferences.

[21]  C. Piermarocchi,et al.  Giant Up-Conversion Efficiency of InGaAs Quantum Dots in a Planar Microcavity , 2014, Scientific Reports.

[22]  Albert Rose,et al.  Concepts in photoconductivity and allied problems , 1963 .

[23]  Vladimir Bulovic,et al.  Photodetectors based on treated CdSe quantum-dot films , 2005 .

[24]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[25]  P. Guyot-Sionnest,et al.  1/f noise in semiconductor and metal nanocrystal solids , 2014 .

[26]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[27]  E. Sargent,et al.  Colloidal quantum dot solar cells , 2012, Nature Photonics.

[28]  Moungi G Bawendi,et al.  Energy level modification in lead sulfide quantum dot thin films through ligand exchange. , 2014, ACS nano.

[29]  S. McGlynn,et al.  Concepts in Photoconductivity and Allied Problems. , 1964 .

[30]  Yanjun Fang,et al.  Resolving Weak Light of Sub‐picowatt per Square Centimeter by Hybrid Perovskite Photodetectors Enabled by Noise Reduction , 2015, Advanced materials.

[31]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[32]  R. Curry,et al.  Lead sulphide nanocrystal photodetector technologies , 2016, Nature Photonics.

[33]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[34]  Paul L. Burn,et al.  Filterless narrowband visible photodetectors , 2015, Nature Photonics.

[35]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[36]  Illan J. Kramer,et al.  Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance , 2016, Advanced materials.

[37]  Paul Meredith,et al.  Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes , 2015, Nature Communications.

[38]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[39]  Wei Zhang,et al.  Gain and recombination dynamics of quantum-dot infrared photodetectors , 2006 .

[40]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[41]  Oleksandr Voznyy,et al.  Quantum-dot-in-perovskite solids , 2015, Nature.

[42]  Kwong-Kit Choi,et al.  Photoconductive gain and generation‐recombination noise in quantum well infrared photodetectors , 1995 .

[43]  Oleksandr Voznyy,et al.  Highly efficient quantum dot near-infrared light-emitting diodes , 2016, Nature Photonics.

[44]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[45]  Paul Meredith,et al.  Low Noise, IR‐Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging , 2015, Advanced materials.

[46]  Oleksandr Voznyy,et al.  Electronically active impurities in colloidal quantum dot solids. , 2014, ACS nano.

[47]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.