Bias adjustment and advection interpolation of long-term high resolution radar rainfall series

Summary It is generally acknowledged that in order to apply radar rainfall data for hydrological proposes adjustment against ground observations are crucial. Traditionally, radar reflectivity is transformed into rainfall rates applying a fixed reflectivity – rainfall rate relationship even though this is known to depend on the changing drop size distribution of the specific rain. This creates a transient bias between the radar rainfall and the ground observations due to seasonal changes of the drop size distribution as well as other atmospheric effects and effects related to the radar observational technology. In this study different bias adjustment techniques is investigated, developing a complete 10-year dataset (2002–2012) of high spatio-temporal resolution radar rainfall based on a radar observations from a single C-band radar from Denmark. Results show that hourly adjustment mean field bias adjustment outperform daily mean field bias adjustment with regards to estimation of rainfall totals and peak rain rates. Furthermore, it is demonstrated that radar rainfall estimates can be improved significantly by implementation of a novel advection interpolation technique.

[1]  Remko Uijlenhoet,et al.  Extreme value modeling of areal rainfall from weather radar , 2010 .

[2]  H. Madsen,et al.  Update of regional intensity-duration-frequency curves in Denmark: tendency towards increased storm intensities. , 2009 .

[3]  G. Galli,et al.  Three Methods to Determine Profiles of Reflectivity from Volumetric Radar Data to Correct Precipitation Estimates , 2000 .

[4]  R. Moore,et al.  Static and dynamic calibration of radar data for hydrological use , 2000 .

[5]  Michael R. Rasmussen,et al.  Marine X-band Weather Radar Data Calibration , 2012 .

[6]  M. Kitchen,et al.  Representativeness errors in comparisons between radar and gauge measurements of rainfall , 1992 .

[7]  Witold F. Krajewski,et al.  Modeling radar-rainfall estimation uncertainties using parametric and non-parametric approaches , 2008 .

[8]  Dong-Jun Seo,et al.  An Intercomparison Study of NEXRAD Precipitation Estimates , 1996 .

[9]  Edward A. Brandes,et al.  Optimizing Rainfall Estimates with the Aid of Radar , 1975 .

[10]  Victor Koren,et al.  Comparing Mean Areal Precipitation Estimates from NEXRAD and Rain Gauge Networks , 1999 .

[11]  Jian Zhang,et al.  Constructing Three-Dimensional Multiple-Radar Reflectivity Mosaics: Examples of Convective Storms and Stratiform Rain Echoes , 2005 .

[12]  Witold F. Krajewski,et al.  Estimation of the mean field bias of radar rainfall estimates , 1991 .

[13]  P. Willems,et al.  Trends and multidecadal oscillations in rainfall extremes, based on a more than 100‐year time series of 10 min rainfall intensities at Uccle, Belgium , 2008 .

[14]  C. Collier,et al.  A weather radar correction procedure for real-time estimation of surface rainfall , 1983 .

[15]  Witold F. Krajewski,et al.  Cokriging radar‐rainfall and rain gage data , 1987 .

[16]  Dong-Jun Seo,et al.  The WSR-88D rainfall algorithm , 1998 .

[17]  100 years of Belgian rainfall: are there trends? , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[18]  C. Collier Accuracy of rainfall estimates by radar, part I: Calibration by telemetering raingauges , 1986 .

[19]  Mary Lynn Baeck,et al.  Rainfall Estimation by the WSR-88D for Heavy Rainfall Events , 1998 .

[20]  Dong-Jun Seo,et al.  Real-time estimation of mean field bias in radar rainfall data , 1999 .

[21]  Miguel A. Rico-Ramirez,et al.  Rainfall Estimation with an Operational Polarimetric C-band Radar in the UK: Comparison with a Gauge Network and Error Analysis , 2011 .

[22]  U. Germann,et al.  Radar precipitation measurement in a mountainous region , 2006 .

[23]  Iwan Holleman,et al.  Bias adjustment and long‐term verification of radar‐based precipitation estimates , 2007 .

[24]  Francesco Laio,et al.  Time-dependent Z-R relationships for estimating rainfall fields from radar measurements , 2010 .

[25]  G. Pegram,et al.  Combining radar and rain gauge rainfall estimates using conditional merging , 2005 .

[26]  Peter Steen Mikkelsen,et al.  Selection of regional historical rainfall time series as input to urban drainage simulations at ungauged locations , 2005 .

[27]  M. Borga,et al.  Long‐term assessment of bias adjustment in radar rainfall estimation , 2002 .

[28]  P. Tabary,et al.  The New French Operational Radar Rainfall Product. Part I: Methodology , 2007 .

[29]  Guido Vaes,et al.  Towards a roadmap for use of radar rainfall data in urban drainage , 2004 .

[30]  J. Jaime Gómez-Hernández,et al.  A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data , 2009 .

[31]  Grzegorz J. Ciach,et al.  Local Random Errors in Tipping-Bucket Rain Gauge Measurements , 2003 .

[32]  H. Madsen,et al.  Estimation of regional intensity-duration-frequency curves for extreme precipitation , 1998 .

[33]  Lars Kai Hansen,et al.  Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[34]  R. Rinehart,et al.  Three-dimensional storm motion detection by conventional weather radar , 1978, Nature.

[35]  Frédéric Fabry,et al.  High resolution rainfall measurements by radar for very small basins: the sampling problem reexamined , 1994 .

[36]  Jarmo Koistinen,et al.  Gauge-Radar network adjustment for the baltic sea experiment , 2000 .

[37]  Witold F. Krajewski,et al.  Radar hydrology: rainfall estimation. , 2002 .

[38]  M. R. Rasmussen,et al.  A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model , 2014 .

[39]  Witold F. Krajewski,et al.  Analyses of a long‐term, high‐resolution radar rainfall data set for the Baltimore metropolitan region , 2012 .

[40]  K. Jensen,et al.  Evaluation of the value of radar QPE data and rain gauge data for hydrological modeling , 2013 .

[41]  Isztar Zawadzki,et al.  Error Statistics of VPR Corrections in Stratiform Precipitation , 2005 .

[42]  Uwe Haberlandt,et al.  Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event , 2007 .

[43]  A. Bellon,et al.  Errors in the Thiessen technique for estimating areal rain amounts using weather radar data , 1983 .

[44]  Witold F. Krajewski,et al.  Conditional Bias in Radar Rainfall Estimation. , 2000 .

[45]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar , 2001 .

[46]  Mary Lynn Baeck,et al.  Long‐Term High‐Resolution Radar Rainfall Fields for Urban Hydrology , 2014 .

[47]  J. Smith,et al.  Analyses of the temporal and spatial structures of heavy rainfall from a catalog of high-resolution radar rainfall fields , 2014 .

[48]  Alexis Berne,et al.  Temporal and spatial resolution of rainfall measurements required for urban hydrology , 2004 .

[49]  A. Overeem,et al.  Derivation of a 10-Year Radar-Based Climatology of Rainfall , 2009 .

[50]  Matthias Steiner,et al.  Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation , 1999 .

[51]  Michael R. Rasmussen,et al.  Short-term forecasting of urban storm water runoff in real-time using extrapolated radar rainfall data , 2013 .

[52]  G. Villarini,et al.  Spectrum of storm event hydrologic response in urban watersheds , 2013 .

[53]  Mary Lynn Baeck,et al.  Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition , 2013 .

[54]  Ashish Sharma,et al.  Correcting of real-time radar rainfall bias using a Kalman filtering approach , 2006 .

[55]  James W. Wilson,et al.  Radar Measurement of Rainfall—A Summary , 1979 .

[56]  Witold F. Krajewski,et al.  Empirically based modelling of radar‐rainfall uncertainties for a C‐band radar at different time‐scales , 2009 .

[57]  H. Madsen,et al.  Regional estimation of rainfall intensity‐duration‐frequency curves using generalized least squares regression of partial duration series statistics , 2002 .

[58]  Jay P. Breidenbach,et al.  Real-Time Correction of Spatially Nonuniform Bias in Radar Rainfall Data Using Rain Gauge Measurements , 2002 .

[59]  Witold F. Krajewski,et al.  Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall , 2010 .

[60]  Arthur Witt,et al.  A Real-Time, Three-Dimensional, Rapidly Updating, Heterogeneous Radar Merger Technique for Reflectivity, Velocity, and Derived Products , 2006 .

[61]  G. Villarini,et al.  Product-Error-Driven Uncertainty Model for Probabilistic Quantitative Precipitation Estimation with NEXRAD Data , 2007 .

[62]  Laurent Delobbe,et al.  Evaluation of radar-gauge merging methods for quantitative precipitation estimates , 2009 .

[63]  Peter Steen Mikkelsen,et al.  Comparison of short-term rainfall forecasts for model-based flow prediction in urban drainage systems. , 2013, Water science and technology : a journal of the International Association on Water Pollution Research.

[64]  L. Li,et al.  Nowcasting of Motion and Growth of Precipitation with Radar over a Complex Orography , 1995 .

[65]  Louis J. Battan,et al.  Radar Observation of the Atmosphere , 1973 .

[66]  Dong-Jun Seo,et al.  Independent Assessment of Incremental Complexity in NWS Multisensor Precipitation Estimator Algorithms , 2013 .

[67]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .