다층 퍼셉트론은 다양한 응용 분야에 성공적으로 적용되고 있는 대표적인 신경회로망 모델이다. 그러나 다층 퍼셉트론의 학습에서 나타나는 플라토에 기인한 느린 학습 속도와 지역 극소는 실제 응용문제에 적용함에 있어서 가장 큰 문제로 지적되어왔다. 이 문제를 해결하기 위해 여러 가지 다양한 학습알고리즘들이 개발되어 왔으나, 계산의 비효율성으로 인해 실제 문제에는 적용하기 힘든 예가 많은 등, 현재까지 만족할 만한 해결책은 제시되지 못하고 있다. 본 논문에서는 다층퍼셉트론의 베이시스 함수로 사용되는 시그모이드 함수를 보다 일반화된 형태로 정의하여 사용함으로써 학습에 있어서의 플라토를 완화하고, 지역극소에 빠지는 것을 줄이는 접근방법을 소개한다. 본 방법은 기존의 변형된 가중치 수정식을 사용한 학습 속도 향상의 방법들과는 다른 접근 방법을 택함으로써 기존의 방법들과 함께 사용하는 것이 가능하다는 특징을 갖고 있다. 제안하는 방법의 성능을 확인하기 위하여 간단하 패턴 인식 문제들에의 적용 실험 및 기존의 학습 속도 향상 방법을 함께 사용하여 시계열 예측 문제에 적용할 실험을 수행하였고, 그 결과로부터 제안한 방법의 효율성
을 확인할 수 있었다.