Size-dependent dielectric behaviour of magnetic Gd2O3 nanocrystals dispersed in a silica matrix

Magnetic nanocrystalline Gd2O3 particles have been successfully synthesized in a silica glass matrix by the sol–gel method at calcination temperatures of 700 °C and above. The optical spectra, corresponding to the transition from ground 8S7/2 to the excited 6P, 6I and 6D multiplets, show a large blue shift which increases with decreasing particle size. Calculated free ion parameters represent different electrostatic and spin–orbit interactions of nanocrystalline Gd2O3 compared with the bulk Gd2O3. The thermal behaviour of magnetization (zero-field-cooled and field-cooled) and magnetic hysteresis of Gd2O3 nanocrystals in the 5–300 K temperature interval have demonstrated that the Gd2O3 nanocrystals present in these glasses display superparamagnetic–ferromagnetic transition at low temperatures. The present Gd2O3 nanoparticles embedded in the silica glass matrix show a high (~103) dielectric constant with considerable low loss and good temperature-independent character associated with an important technological implication which promises wide applications in memory devices.

[1]  G. Hadjipanayis,et al.  Rare-earth-rich metallic glasses. I. Magnetic hysteresis , 1981 .

[2]  F. Morrison,et al.  CaCu3Ti4O12: One-step internal barrier layer capacitor , 2002 .

[3]  Sang-Won Kang,et al.  Interface effect on dielectric constant of HfO2∕Al2O3 nanolaminate films deposited by plasma-enhanced atomic layer deposition , 2007 .

[4]  H. Sakata,et al.  Microstructure and dielectric properties of NaxTiyNi1−x−yO (x = 0.05–0.30, y = 0.02) , 2008 .

[5]  B. Chaudhuri,et al.  Low loss giant dielectric and electrical transport behavior of KxTiyNi1-x-yO system , 2006 .

[6]  A. Pal,et al.  Field-induced spin–flop transitions of interacting nanosized α-Fe2O3 particles dispersed in a silica glass matrix , 2008 .

[7]  Cheng-Fu Yang Improvement of the sintering and dielectric characteristics of surface barrier layer capacitors by CuO addition , 1996 .

[8]  W. S. Graswinckel,et al.  Optical Response of High-Dielectric-Constant Perovskite-Related Oxide , 2001, Science.

[9]  A. Pal,et al.  Magnetism of Mn2O3 nanocrystals dispersed in a silica matrix: Size effects and phase transformations , 2006 .

[10]  John D. Olivas,et al.  Advancements in MEMS materials and processing technology , 1998 .

[11]  J. Dormann,et al.  Magnetic Relaxation in Fine‐Particle Systems , 2007 .

[12]  G. Dieke,et al.  Energy Levels and Crystal Field of LaCl3:Gd3+ , 1967 .

[13]  William F. Meggers,et al.  Spectroscopic properties of rare earths , 1965 .

[14]  S. Sakka,et al.  The sol-gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films , 1982 .

[15]  H. Sakata,et al.  Copper (II) oxide as a giant dielectric material , 2006 .

[16]  Arthur W. Sleight,et al.  High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases , 2000 .

[17]  Derek C. Sinclair,et al.  Giant Barrier Layer Capacitance Effects in CaCu3Ti4O12 Ceramics , 2002 .

[18]  T. Zarubina,et al.  Unusual magnetic transitions and nature of magnetic resonance spectra in oxide glasses containing gadolinium , 2005 .

[19]  Integration of functional epitaxial oxides into silicon: from high-k application to nanostructures , 2007 .

[20]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact With silicon , 1996 .

[21]  S. L. Bud'ko,et al.  Evaluation of a long-time temperature drift in a commercial Quantum Design MPMS SQUID magnetometer using Gd2O3 as a standard , 2006 .

[22]  Yuan Deng,et al.  Giant dielectric permittivity observed in Li and Ti doped NiO. , 2002, Physical review letters.

[23]  A. Pal,et al.  Size-dependent magnetic properties of VO2 nanocrystals dispersed in a silica matrix , 2008 .

[24]  B. G. Wybourne,et al.  ENERGY LEVELS OF TRIVALENT GADOLINIUM AND IONIC CONTRIBUTIONS TO THE GROUND- STATE SPLITTING , 1966 .

[25]  G. Racah,et al.  Theory of Complex Spectra. IV , 1942 .

[26]  D. Krol,et al.  The densification of monolithic gels , 1984 .

[27]  S. M. Spearing,et al.  Materials issues in microelectromechanical systems (MEMS) , 2000 .