A 130.7-$\hbox{mm}^{2}$ 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology

A 32-Gb ReRAM test chip has been developed in a 24-nm process, with a diode as the selection device and metal oxide as the switching element. The memory array is constructed with cross-point architecture to allow multiple memory layers stacked above the supporting circuitry and minimize the circuit area overhead. Die efficiency is further improved by sharing wordlines and bitlines between adjacent blocks. As the number of sense amplifiers under the memory array is limited, a pipelined array control scheme is adopted to compensate the performance impact while utilizing the fast switching time of ReRAM cells. With the chip current consumption being dominated by the array leakage and sensitive to array bias and operating conditions, a charge pump stage control scheme is introduced to dynamically adapt to the operating conditions for optimal power consumption. Smart Read during sensing and leakage current compensation scheme during programming are applied to the large-block architecture and achieve a chip density that is several orders of magnitude higher than prior ReRAM developments.

[1]  Janusz A. Starzyk,et al.  A DC-DC charge pump design based on voltage doublers , 2001 .

[2]  G. Palumbo,et al.  Charge-pump circuits: power-consumption optimization , 2002 .

[3]  B. Kleveland,et al.  512 Mb PROM with 8 layers of antifuse/diode cells , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[4]  Meng-Fan Chang,et al.  A low store energy, low VDDmin, nonvolatile 8T2R SRAM with 3D stacked RRAM devices for low power mobile applications , 2010, 2010 Symposium on VLSI Circuits.

[5]  Chang Hua Siau,et al.  A 0.13µm 64Mb multi-layered conductive metal-oxide memory , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[6]  Ming-Hsiu Lee,et al.  Multi-level 40nm WOX resistive memory with excellent reliability , 2011, 2011 International Electron Devices Meeting.

[7]  Heng-Yuan Lee,et al.  A 4Mb embedded SLC resistive-RAM macro with 7.2ns read-write random-access time and 160ns MLC-access capability , 2011, 2011 IEEE International Solid-State Circuits Conference.

[8]  X. A. Tran,et al.  Self-rectifying and forming-free unipolar HfOx based-high performance RRAM built by fab-avaialbe materials , 2011, 2011 International Electron Devices Meeting.

[9]  Makoto Kitagawa,et al.  A 4Mb conductive-bridge resistive memory with 2.3GB/s read-throughput and 216MB/s program-throughput , 2011, 2011 IEEE International Solid-State Circuits Conference.

[10]  U-In Chung,et al.  Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[11]  Ken Takeuchi,et al.  x11 performance increase, x6.9 endurance enhancement, 93% energy reduction of 3D TSV-integrated hybrid ReRAM/MLC NAND SSDs by data fragmentation suppression , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[12]  G. Chen,et al.  A 0.13µm 8Mb logic based CuxSiyO resistive memory with self-adaptive yield enhancement and operation power reduction , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[13]  Y. S. Kim,et al.  Integration of 4F2 selector-less crossbar array 2Mb ReRAM based on transition metal oxides for high density memory applications , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[14]  Meng-Fan Chang,et al.  A 0.5V 4Mb logic-process compatible embedded resistive RAM (ReRAM) in 65nm CMOS using low-voltage current-mode sensing scheme with 45ns random read time , 2012, 2012 IEEE International Solid-State Circuits Conference.

[15]  Abbas El Gamal,et al.  Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory , 2012, 2012 IEEE International Solid-State Circuits Conference.

[16]  Yukio Hayakawa,et al.  An 8 Mb Multi-Layered Cross-Point ReRAM Macro With 443 MB/s Write Throughput , 2012, IEEE Journal of Solid-State Circuits.

[17]  Shuhei Tanakamaru,et al.  Unified solid-state-storage architecture with NAND flash memory and ReRAM that tolerates 32× higher BER for big-data applications , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.