The Mean Width of Circumscribed Random Polytopes

Abstract For a given convex body $K$ in ${{\mathbb{R}}^{d}}$ , a random polytope ${{K}^{(n)}}$ is defined (essentially) as the intersection of $n$ independent closed halfspaces containing $K$ and having an isotropic and (in a specified sense) uniform distribution. We prove upper and lower bounds of optimal orders for the difference of the mean widths of ${{K}^{(n)}}$ and $K$ as $n$ tends to infinity. For a simplicial polytope $P$ , a precise asymptotic formula for the difference of the mean widths of ${{P}^{(n)}}$ and $P$ is obtained.

[1]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[2]  A. Rényi,et al.  über die konvexe Hülle von n zufÄllig gewÄhlten Punkten. II , 1964 .

[3]  B. Efron The convex hull of a random set of points , 1965 .

[4]  A. Rényi,et al.  ZufÄllige konvexe Polygone in einem Ringgebiet , 1968 .

[5]  W. Reed,et al.  Random points in a simplex , 1974 .

[6]  H. Groemer,et al.  On the mean value of the volume of a random polytope in a convex set , 1974 .

[7]  P. Gruber,et al.  Approximation of convex bodies by polytopes , 1982 .

[8]  Rolf Schneider Approximation of convex bodies by random polytopes , 1987 .

[9]  Imre Bárány,et al.  CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES , 1988 .

[10]  Imre Bfir,et al.  Intrinsic volumes and f-vectors of random polytopes , 1989 .

[11]  Fernando Affentranger,et al.  On the convex hull of uniform random points in a simpled-polytope , 1991, Discret. Comput. Geom..

[12]  Christian Buchta,et al.  Random polytopes in a convex polytope, independence of shape, and concentration of vertices , 1993 .

[13]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[14]  P. Gruber Asymptotic estimates for best and stepwise approximation of convex bodies II , 1993 .

[15]  R. Connelly In Handbook of Convex Geometry , 1993 .

[16]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[17]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[18]  O. Barndorff-Nielsen,et al.  Stochastic Geometry , 1999 .

[19]  Christian Buchta,et al.  The convex hull of random points in a tetrahedron: Solution of Blaschke's problem and more general results , 2001 .

[20]  K. Böröczky,et al.  Approximation of smooth convex bodies by random circumscribed polytopes , 2004 .

[21]  Rolf Schneider,et al.  Discrete Aspects of Stochastic Geometry , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[22]  Imre Bárány,et al.  Random polytopes , 2006 .

[23]  I Barany,et al.  Random polytopes, convex bodies, and approximation , 2007 .

[24]  J. Alonso,et al.  Convex and Discrete Geometry , 2009 .