Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol–gel process

[1]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[2]  M. A. Señarís-Rodríguez,et al.  A simple solvothermal synthesis of MFe2O4 (M=Mn, Co and Ni) nanoparticles , 2009 .

[3]  C. Feldmann,et al.  Microwave-assisted polyol synthesis of aluminium- and indium-doped ZnO nanocrystals. , 2009, Journal of colloid and interface science.

[4]  J. Dai,et al.  Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles , 2009 .

[5]  C. Oliver Kappe,et al.  Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature , 2009, Molecular Diversity.

[6]  Hao Wang,et al.  Fabrication and morphology control of BaWO4 thin films by microwave assisted chemical bath deposition , 2009 .

[7]  Markus Niederberger,et al.  Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. , 2009, ACS nano.

[8]  J. Han Recent progress in thin film processing by magnetron sputtering with plasma diagnostics , 2009 .

[9]  Xianluo Hu,et al.  Continuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwave‐Polyol Process and Their Application for Humidity Sensing , 2008 .

[10]  Markus Niederberger,et al.  Surfactant-free nonaqueous synthesis of metal oxide nanostructures. , 2008, Angewandte Chemie.

[11]  Markus Niederberger,et al.  Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles , 2008 .

[12]  S. Chambers Molecular beam epitaxial growth of doped oxide semiconductors , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  R. Piticescu,et al.  Solvothermal Synthesis of Co-doped ZnO Nanopowders , 2008 .

[14]  Wei-wei Wang Microwave-induced polyol-process synthesis of MIIFe2O4 (M = Mn, Co) nanoparticles and magnetic property , 2008 .

[15]  M. Willinger,et al.  NON-AQUEOUS SOL-GEL ROUTES APPLIED TO ATOMIC LAYER DEPOSITION , 2008 .

[16]  Falong Jia,et al.  Non‐Aqueous Sol–Gel Approach towards the Controllable Synthesis of Nickel Nanospheres, Nanowires, and Nanoflowers , 2008 .

[17]  J. Cheon,et al.  Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. , 2008, Accounts of chemical research.

[18]  Markus Niederberger,et al.  One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. , 2008, Chemical communications.

[19]  Jianhui Yang,et al.  Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method , 2008 .

[20]  T. He,et al.  Monodispersed Co, Ni-Ferrite Nanoparticles with Tunable Sizes: Controlled Synthesis, Magnetic Properties, and Surface Modification , 2008 .

[21]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of smart nanostructured materials , 2007 .

[22]  Masayuki Okuya,et al.  ITO thin films prepared by a microwave heating , 2007 .

[23]  Liming Shen,et al.  A facile thermolysis route to monodisperse ferrite nanocrystals. , 2007, Journal of the American Chemical Society.

[24]  Gabriel Shemer,et al.  Tuning a Colloidal Synthesis to Control Co2+ Doping in Ferrite Nanocrystals , 2007 .

[25]  C. Rinaldi,et al.  Synthesis and magnetic characterization of cobalt-substituted ferrite (CoxFe3−xO4) nanoparticles , 2007 .

[26]  Taeghwan Hyeon,et al.  Synthesis of monodisperse spherical nanocrystals. , 2007, Angewandte Chemie.

[27]  Sangsig Kim,et al.  Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties , 2007 .

[28]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[29]  Younan Xia,et al.  Superparamagnetic Colloids: Controlled Synthesis and Niche Applications , 2007 .

[30]  Etienne Duguet,et al.  Magnetic nanoparticle design for medical applications , 2006 .

[31]  Seongyop Lim,et al.  Crystal Structures and Growth Mechanisms of Au@Ag Core−Shell Nanoparticles Prepared by the Microwave−Polyol Method , 2006 .

[32]  Wenyong Lai,et al.  Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. , 2006, The journal of physical chemistry. B.

[33]  A. Rossi,et al.  Nondestructive in‐depth composition profile of oxy‐hydroxide nanolayers on iron surfaces from ARXPS measurement , 2006 .

[34]  S. Darling,et al.  A materials chemistry perspective on nanomagnetism , 2005 .

[35]  M. Sastry,et al.  Cobalt and magnesium ferrite nanoparticles: preparation using liquid foams as templates and their magnetic characteristics. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[36]  M. A. Hernández-Fenollosa,et al.  Nanostructured zinc oxide films grown from microwave activated aqueous solutions , 2005 .

[37]  M. Antonietti,et al.  Magnetite Nanocrystals: Nonaqueous Synthesis, Characterization, and Solubility† , 2005 .

[38]  V. Šepelák,et al.  Nanocrystalline Ferrites Prepared by Mechanical Activation and Mechanosynthesis , 2005 .

[39]  Qi-Zong Qin,et al.  Cobalt ferrite thin films as anode material for lithium ion batteries , 2004 .

[40]  Xiaogang Peng,et al.  Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach , 2004 .

[41]  C. O'connor,et al.  Recent advances in the liquid-phase syntheses of inorganic nanoparticles. , 2004, Chemical reviews.

[42]  T. Hyeon,et al.  Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals , 2004 .

[43]  Q. Song,et al.  Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. , 2004, Journal of the American Chemical Society.

[44]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[45]  T. Jin,et al.  Rapid fabrication of luminescent Eu:YVO4 films by microwave-assisted chemical solution deposition , 2004 .

[46]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[47]  J. Gilman,et al.  Nanotechnology , 2001 .

[48]  B. Nair,et al.  Final Report on the Safety Assessment of Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate , 2001, International journal of toxicology.

[49]  F. A. Andersen Final report on the safety assessment of Benzyl Alcohol, Benzoic Acid, and Sodium benzoate , 2001 .

[50]  C. Alexiou,et al.  Locoregional cancer treatment with magnetic drug targeting. , 2000, Cancer research.

[51]  M. Langell,et al.  Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy , 2000 .

[52]  Xavier Domènech,et al.  TiO2 thin film deposition from solution using microwave heating , 2000 .

[53]  M. Sugimoto The Past, Present, and Future of Ferrites , 1999 .

[54]  M. Tuilier,et al.  Investigation of the chemical bonding in 3d8 nickel(II) charge transfer insulators (NiO, oxidic spinels) from ligand-field spectroscopy, Ni 2p XPS and X-ray absorption spectroscopy , 1997 .

[55]  Alan J. Hurd,et al.  Review of sol-gel thin film formation , 1992 .

[56]  R. Weissleder,et al.  Receptor imaging: application to MR imaging of liver cancer. , 1990, Radiology.

[57]  S. Harris,et al.  A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy , 1989 .

[58]  W. A. Dench,et al.  Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids , 1979 .

[59]  K. Wandelt,et al.  Core and valence level photoemission studies of iron oxide surfaces and the oxidation of iron , 1977 .

[60]  J. H. Scofield,et al.  Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV , 1976 .

[61]  M. G. Cook,et al.  X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper , 1975 .

[62]  Sabrina S Wilson Radiology , 1938, Glasgow Medical Journal.