High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids

A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.

[1]  Phillip Colella,et al.  High-order, finite-volume methods in mapped coordinates , 2010, J. Comput. Phys..

[2]  Clinton P. T. Groth,et al.  A computational framework for predicting laminar reactive flows with soot formation , 2010 .

[3]  R. Keppens,et al.  MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS , 2014, 1407.2052.

[4]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[5]  Carlos A. Felippa,et al.  A compendium of FEM integration formulas for symbolic work , 2004 .

[6]  T. Fuller‐Rowell,et al.  OpenGGCM Simulations for the THEMIS Mission , 2008 .

[7]  Chris Hill,et al.  Implementation of an Atmosphere-Ocean General Circulation Model on the Expanded Spherical Cube , 2004 .

[8]  John Lyon,et al.  The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code , 2004 .

[9]  P. Paolucci,et al.  The “Cubed Sphere” , 1996 .

[10]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[11]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[12]  Rony Keppens,et al.  Hybrid block-AMR in cartesian and curvilinear coordinates: MHD applications , 2007, J. Comput. Phys..

[13]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[14]  Enrico Camporeale,et al.  Numerical modeling of space plasma flows , 2009 .

[15]  Jean-Pierre Croisille,et al.  Hermitian Compact Interpolation on the Cubed-Sphere Grid , 2013, J. Sci. Comput..

[16]  Hans De Sterck,et al.  High-order central ENO finite-volume scheme for ideal MHD , 2013 .

[17]  Xinfeng Gao,et al.  A Parallel Solution-Adaptive Method for Turbulent Non-Premixed Combusting Flows , 2008 .

[18]  Andrea Mignone,et al.  High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates , 2014, J. Comput. Phys..

[19]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[20]  J. Gottlieb,et al.  Parallel AMR Scheme for Turbulent Multi-Phase Rocket Motor Core Flows , 2005 .

[21]  George Em Karniadakis,et al.  A Discontinuous Galerkin Method for the Viscous MHD Equations , 1999 .

[22]  Lucian Ivan,et al.  Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR) , 2011 .

[23]  Rony Keppens,et al.  Scalar hyperbolic PDE simulations and coupling strategies , 2014, J. Comput. Appl. Math..

[24]  Clinton P. T. Groth,et al.  A High-Order Central ENO Finite-Volume Scheme for Three-Dimensional Low-Speed Viscous Flows on Unstructured Mesh , 2015 .

[25]  K. Germaschewski,et al.  Three-dimensional MHD high-resolution computations with CWENO employing adaptive mesh refinement , 2004 .

[26]  Jay D. Salmonson,et al.  APPLICATION OF THE CUBED-SPHERE GRID TO TILTED BLACK HOLE ACCRETION DISKS , 2009 .

[27]  Scott Northrup,et al.  Parallel Implicit Adaptive Mesh Refinement Scheme for Body-Fitted Multi-Block Mesh , 2005 .

[28]  Clinton P. T. Groth,et al.  Solution of the equation of radiative transfer using a Newton-Krylov approach and adaptive mesh refinement , 2012, J. Comput. Phys..

[29]  Hans De Sterck,et al.  Multi-dimensional finite-volume scheme for hyperbolic conservation laws on three-dimensional solution-adaptive cubed-sphere grids , 2013, J. Comput. Phys..

[30]  Clinton P. T. Groth,et al.  High-Order Central ENO Finite-Volume Scheme with Adaptive Mesh Refinement , 2007 .

[31]  Shian-Jiann Lin,et al.  A Two-Way Nested Global-Regional Dynamical Core on the Cubed-Sphere Grid , 2013 .

[32]  Andrea Mignone,et al.  High-order conservative finite difference GLM-MHD schemes for cell-centered MHD , 2010, J. Comput. Phys..

[33]  Rony Keppens,et al.  Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics , 2012, J. Comput. Phys..

[34]  Feng Xiao,et al.  Shallow water model on cubed-sphere by multi-moment finite volume method , 2008, J. Comput. Phys..

[35]  Christiane Jablonowski,et al.  MCore: A non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods , 2012, J. Comput. Phys..

[36]  Scott Northrup,et al.  Parallel solution-adaptive method for two dimensional non-premixed combusting flows , 2011 .

[37]  Clinton P. T. Groth,et al.  High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows , 2011, J. Comput. Phys..

[38]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[39]  C. P. T. Groth,et al.  High-Order CENO Finite-Volume Scheme for Low-Speed Viscous Flows on Three-Dimensional Unstructured Mesh , 2011 .

[40]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[41]  Chongam Kim,et al.  Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids , 2005, J. Comput. Phys..

[42]  E. Harnett,et al.  Two‐dimensional MHD simulation of the solar wind interaction with magnetic field anomalies on the surface of the Moon , 2000 .

[43]  Dimitri J. Mavriplis,et al.  Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .

[44]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[45]  Randall J. LeVeque,et al.  Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains , 2008, SIAM Rev..

[46]  Clinton P. T. Groth,et al.  Experimental and numerical study of soot formation in laminar ethylene diffusion flames at elevated pressures from 10 to 35 atm , 2011 .

[47]  Bram van Leer,et al.  High-order finite-volume methods for the shallow-water equations on the sphere , 2010, J. Comput. Phys..

[48]  Jing-Mei Qiu,et al.  A Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere , 2014 .

[49]  Hong Luo,et al.  A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on tetrahedral grids , 2012, J. Comput. Phys..

[50]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[51]  Christoph Erath,et al.  A conservative multi-tracer transport scheme for spectral-element spherical grids , 2014, J. Comput. Phys..

[52]  Phillip Colella,et al.  High-order finite-volume methods on locally-structured grids , 2009 .

[53]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[54]  Dinshaw S. Balsara,et al.  Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..

[55]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[56]  Christoph Erath,et al.  On Mass Conservation in High-Order High-Resolution Rigorous Remapping Schemes on the Sphere , 2013 .

[57]  Clinton P. T. Groth,et al.  Parallel High-Order Anisotropic Block-Based Adaptive Mesh Refinement Finite-Volume Scheme , 2011 .

[58]  Clinton P. T. Groth,et al.  Numerical Modeling of Micron-Scale Flows Using the Gaussian Moment Closure , 2005 .

[59]  Lucian Ivan,et al.  Three-Dimensional MHD on Cubed-Sphere Grids: Parallel Solution-Adaptive Simulation Framework , 2011 .

[60]  V. Venkatakrishnan On the accuracy of limiters and convergence to steady state solutions , 1993 .

[61]  Ö. Gülder,et al.  Effects of gravity and pressure on laminar coflow methane–air diffusion flames at pressures from 1 to 60 atmospheres , 2011 .

[62]  Hans De Sterck,et al.  High-Order Central ENO Finite-Volume Scheme for MHD on Three-Dimensional Cubed-Sphere Grids , 2012 .

[63]  Paul A. Ullrich,et al.  Atmospheric Modeling with High-Order Finite-Volume Methods , 2011 .

[64]  T. Gombosi,et al.  ALFVÉN WAVE SOLAR MODEL (AWSoM): CORONAL HEATING , 2013, 1311.4093.

[65]  W. Gander,et al.  Adaptive Quadrature—Revisited , 2000 .

[66]  Clinton P. T. Groth,et al.  International Journal of Computational Fluid Dynamics a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows , 2022 .

[67]  J. Z. Zhu,et al.  The finite element method , 1977 .

[68]  Clinton P. T. Groth,et al.  High-Order CENO Finite-Volume Schemes for Multi-Block Unstructured Mesh , 2011 .

[69]  Lei Bao,et al.  A mass and momentum flux-form high-order discontinuous Galerkin shallow water model on the cubed-sphere , 2014, J. Comput. Phys..

[70]  Quentin F. Stout,et al.  Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..

[71]  Xingliang Li,et al.  A multi-moment transport model on cubed-sphere grid , 2011 .

[72]  Clinton P. T. Groth,et al.  A High-Order Central ENO Finite-Volume Scheme for Three-Dimensional Turbulent Reactive Flows on Unstructured Mesh , 2013 .

[73]  Chao Yang,et al.  Parallel Domain Decomposition Methods with Mixed Order Discretization for Fully Implicit Solution of Tracer Transport Problems on the Cubed-Sphere , 2014, J. Sci. Comput..

[74]  C. Groth,et al.  Towards physically realizable and hyperbolic moment closures for kinetic theory , 2009 .

[75]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[76]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[77]  A. V. Koldoba,et al.  Three-dimensional Magnetohydrodynamic Simulations of Accretion to an Inclined Rotator: The “Cubed Sphere” Method , 2002, astro-ph/0209598.

[78]  Clinton P. T. Groth,et al.  A parallel solution - adaptive method for three-dimensional turbulent non-premixed combusting flows , 2010, J. Comput. Phys..

[79]  John M. Dennis,et al.  A Comparison of Two Shallow-Water Models with Nonconforming Adaptive Grids , 2008 .

[80]  James A. Rossmanith,et al.  A wave propagation method for hyperbolic systems on the sphere , 2006, J. Comput. Phys..

[81]  Scott Northrup,et al.  Solution of Laminar Diffusion Flames Using a Parallel Adaptive Mesh Refinement Algorithm , 2005 .

[82]  Clinton P. T. Groth,et al.  A Mesh Adjustment Scheme for Embedded Boundaries , 2006 .

[83]  William H. Press,et al.  Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .

[84]  Michael Williamschen,et al.  Parallel Anisotropic Block-based Adaptive Mesh Refinement Algorithm For Three-dimensional Flows , 2013 .

[85]  Carl Ollivier-Gooch,et al.  A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows , 2008, J. Comput. Phys..

[86]  J. Sachdev,et al.  A parallel solution-adaptive scheme for multi-phase core flows in solid propellant rocket motors , 2005 .

[87]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .