Review of Multi-criteria Optimization Methods - Theory and Applications

A review of multi-criteria optimization concepts and methods is presented. The techniques provide solutions to the problems involving conflicting and multiple objectives. Several methods based on weighted averages, priority setting, outranking and their combinations are employed. The application and procedure in respect to material selection is presented. It is observed from the literature that no single approach is superior, rather, the selection of a specific method depends on the type of information that is provided in the problem, the designer"s preferences, the solution requirements and the availability of software adopted.

[1]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[2]  Kwang-Jae Kim,et al.  Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions , 2000 .

[3]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[4]  A. Messac,et al.  Mathematical and Pragmatic Perspectives of Physical Programming , 2001 .

[5]  B. Sennaroglu,et al.  OPTIMIZATION OF CHEMICAL ADMIXTURE FOR CONCRETE ON MORTAR PERFORMANCE TESTS USING MIXTURE EXPERIMENTS , 2010 .

[6]  Ali Shanian,et al.  A non-compensatory compromised solution for material selection of bipolar plates for polymer electrolyte membrane fuel cell (PEMFC) using ELECTRE IV , 2006 .

[7]  N. Dopuch,et al.  Management Goals and Accounting for Control. , 1967 .

[8]  Bruce H. Wilson,et al.  Physical Programming for Computational Control , 1998 .

[9]  Carlos Romero Multi-Objective and Goal-Programming Approaches as a Distance Function Model , 1985 .

[10]  Mohammad H. Kurdi,et al.  ROBUST MULTICRITERIA OPTIMIZATION OF SURFACE LOCATION ERROR AND MATERIAL REMOVAL RATE IN HIGH-SPEED MILLING UNDER UNCERTAINTY , 2005 .

[11]  Achille Messac,et al.  Physical programming - Effective optimization for computational design , 1996 .

[12]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[13]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[14]  A. Charnes,et al.  EFFECTIVE CONTROL THROUGH COHERENT DECENTRALIZATION WITH PREEMPTIVE GOALS , 1967 .

[15]  Melvin J. Dubnick Army Corps of Engineers , 1998 .

[16]  Abraham Charnes,et al.  Optimal Estimation of Executive Compensation by Linear Programming , 1955 .

[17]  F. A. Oyawale,et al.  Multi-objective methods for welding flux performance optimization Več namenske metode za optimizacijo uspešnosti varilnega praška , 2010 .

[18]  T. Seager,et al.  Multi-Criteria Decision Analysis: A Framework for Structuring Remedial Decisions at Contaminated Sites , 2004 .

[19]  Peter Nijkamp,et al.  Multicriteria evaluation in physical planning , 1990 .

[20]  Joseph Z. Shyu,et al.  Selecting a weapon system using zero-one goal programming and analytic network process , 2006 .

[21]  Hokey Min,et al.  On the Origin and Persistence of Misconceptions in Goal Programming , 1991 .

[22]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[23]  K. B. Williams,et al.  Management Models and Industrial Applications of Linear Programming , 1962 .

[24]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[25]  A. Messac,et al.  Aggregate Objective Functions and Pareto Frontiers: Required Relationships and Practical Implications , 2000 .

[26]  Mehrdad Tamiz,et al.  Goal programming, compromise programming and reference point method formulations: linkages and utility interpretations , 1998, J. Oper. Res. Soc..

[27]  Ali Shanian,et al.  A material selection model based on the concept of multiple attribute decision making , 2006 .

[28]  Wei Chen,et al.  Exploration of the effectiveness of physical programming in robust design , 2000 .

[29]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .

[30]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[31]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[32]  Goal Programming and Multiple Objective Optimization , 2022 .

[33]  Kaan Yetilmezsoy,et al.  Integration of kinetic modeling and desirability function approach for multi-objective optimization of UASB reactor treating poultry manure wastewater. , 2012, Bioresource technology.

[34]  A. Charnes,et al.  Goal programming and multiple objective optimizations: Part 1 , 1977 .

[35]  Hsing-Pei Kao,et al.  An integrated fuzzy TOPSIS and MCGP approach to supplier selection in supply chain management , 2011, Expert Syst. Appl..

[36]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[37]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[38]  R. Venkata Rao,et al.  Material Selection Using a Novel Multiple Attribute Decision Making Method , 2011, Int. J. Manuf. Mater. Mech. Eng..

[39]  Kalyanmoy Deb,et al.  Nonlinear goal programming using multi-objective genetic algorithms , 2001, J. Oper. Res. Soc..

[40]  Evangelos Triantaphyllou,et al.  Multi-Criteria Decision Making: An Operations Research Approach , 1998 .

[41]  Ignacy Kaliszewski,et al.  A modified weighted tchebycheff metric for multiple objective programming , 1987, Comput. Oper. Res..

[42]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[43]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[44]  A. Shanian,et al.  A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis , 2009, Expert Syst. Appl..

[45]  Glynn J. Sundararaj,et al.  Ability of Objective Functions to Generate Points on Nonconvex Pareto Frontiers , 2000 .

[46]  M. Ramachandran,et al.  Application of multi-criteria decision making to sustainable energy planning--A review , 2004 .

[47]  Achille Messac,et al.  From Dubious Construction of Objective Functions to the Application of Physical Programming , 2000 .

[48]  Mehrdad Tamiz,et al.  Goal programming for decision making: An overview of the current state-of-the-art , 1998, Eur. J. Oper. Res..

[49]  I. Kaliszenski A characterization of properly efficient solutions by an augmented Tchebycheff norm , 1985 .

[50]  D. Popescu,et al.  Multi‐Criteria Optimization , 2014 .

[51]  D. A. Conway Management Goals and Accounting for Control , 1966 .

[52]  C. Romero,et al.  Multiple Objectives in Agricultural Planning: A Compromise Programming Application , 1987 .

[53]  Lothar Thiele Multi-Criteria Optimization , 2010, Encyclopedia of Machine Learning.

[54]  A. Messac,et al.  Generating Well-Distributed Sets of Pareto Points for Engineering Design Using Physical Programming , 2002 .

[55]  Philip D. Hattis,et al.  Physical programming design optimization for High Speed Civil Transport , 1996 .

[56]  J. Granat,et al.  Multicriteria Methodology for the NEEDS Project , 2006 .

[57]  Ching-Ter Chang,et al.  Multi-choice goal programming , 2007 .

[58]  Elahi Bein,et al.  A FUZZY COMPROMISE PROGRAMMING SOLUTION FOR SUPPLIER SELECTION IN QUANTITY DISCOUNTS SITUATION , 2011 .