Polarization effects in the channel of an organic field-effect transistor

We present the results of our calculation of the effects of dynamical coupling of a charge carrier to the electronic polarization and the field-induced lattice displacements at the gate interface of an organic field-effect transistor (OFET). We find that these interactions reduce the effective bandwidth of the charge carrier in the quasi-two-dimensional channel of a pentacene transistor by a factor of 2 from its bulk value when the gate is a high-permittivity dielectric such as (Ta2O5), while this reduction essentially vanishes using a polymer gate insulator. These results point to carrier effective bandwidth as a possible trigger of the dielectric effects on the mobility reported recently in OFETs.

[1]  R. Sikora Ab initio study of phonons in the rutile structure of TiO2 , 2005 .

[2]  J. Brédas,et al.  Shallow trap states in pentacene thin films from molecular sliding , 2005 .

[3]  M. Schaer,et al.  Ultrathin organic transistors on oxide surfaces , 2004, cond-mat/0408562.

[4]  A. Morpurgo,et al.  Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors , 2004, cond-mat/0407293.

[5]  J. Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[6]  Fabio Biscarini,et al.  Spatially correlated charge transport in organic thin film transistors. , 2004, Physical review letters.

[7]  Georg Kresse,et al.  Theory of polaron bandwidth narrowing in organic molecular crystals , 2004 .

[8]  Pa Peter Bobbert,et al.  Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals , 2004 .

[9]  M. Bussac,et al.  Self-trapping of electrons at the field-effect junction of a molecular crystal , 2003 .

[10]  Gilles Horowitz,et al.  Effect of an external electric field on the charge transport parameters in organic molecular semiconductors , 2003 .

[11]  L. Zuppiroli,et al.  The impact of molecular polarization on the electronic properties of molecular semiconductors , 2003, cond-mat/0306353.

[12]  Z. Soos,et al.  Electronic polarization in pentacene crystals and thin films , 2003, cond-mat/0303556.

[13]  Janos Veres,et al.  Low‐k Insulators as the Choice of Dielectrics in Organic Field‐Effect Transistors , 2003 .

[14]  Yuan-Chung Cheng,et al.  Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation , 2003 .

[15]  J. Brédas,et al.  Hole- and electron-vibrational couplings in oligoacene crystals: intramolecular contributions. , 2002, Physical review letters.

[16]  J. P. Calbert,et al.  Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Mathias Schubert,et al.  Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry , 2000 .

[18]  Craig M. Herzinger,et al.  Infrared dielectric anisotropy and phonon modes of sapphire , 2000 .

[19]  J. Humlíček,et al.  IR ellipsometry of the highly anisotropic materials αSiO2 and αAl2O3 , 1993 .

[20]  E. A. Silinsh,et al.  Organic Molecular Crystals , 1980 .

[21]  R. W. Munn,et al.  Polarization energy of a localized charge in a molecular crystal , 1979 .

[22]  J. Sak Theory of Surface Polarons , 1972 .

[23]  R. B. Campbell,et al.  The crystal and molecular structure of pentacene , 1961 .

[24]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[25]  F. Low,et al.  The Motion of Slow Electrons in a Polar Crystal , 1952 .