Video Retrieval Based on Semantic Concepts Results of retrieval experiments are analyzed and evaluated to explore the usefulness of descriptive-language to accurately retrieve video and audio material.

An approach using many intermediate semantic concepts is proposed with the potential to bridge the semantic gap between what a color, shape, and texture-based Blow- level( image analysis can extract from video and what users really want to find, most likely using text descriptions of their information needs. Semantic concepts such as cars, planes, roads, people, animals, and different types of scenes (outdoor, night time, etc.) can be automatically detected in the video with reasonable accuracy. This leads us to ask how can they be used automatically and how does a user (or a retrieval system) translate the user's information need into a selection of related concepts that would help find the relevant video clips, from the large list of available concepts. We illustrate how semantic concept retrieval can be automatically exploited by mapping queries into query classes and through pseudo-relevance feedback. We also provide evidence how a semantic concept can be utilized by users in interactive retrieval, through interfaces that provide affordances of explicit concept selec- tion and search, concept filtering, and relevance feedback. How many concepts we actually need and how accurately they need to be detected and linked through various relationships is specified in the ontology structure.

[1]  Ben Shneiderman,et al.  Clarifying Search: A User-Interface Framework for Text Searches , 1997, D Lib Mag..

[2]  Arnold Neumaier,et al.  Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..

[3]  John R. Smith,et al.  Interactive content-based retrieval of video , 2002, Proceedings. International Conference on Image Processing.

[4]  Jun Yang,et al.  Finding Person X: Correlating Names with Visual Appearances , 2004, CIVR.

[5]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Michael G. Christel,et al.  Addressing the challenge of visual information access from digital image and video libraries , 2005, Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL '05).

[7]  Marcel Worring,et al.  Learned Lexicon-Driven Interactive Video Retrieval , 2006, CIVR.

[8]  Gary Marchionini,et al.  The relative effectiveness of concept-based versus content-based video retrieval , 2004, MULTIMEDIA '04.

[9]  Milind R. Naphade,et al.  Assessing the Filtering and Browsing Utility of Automatic Semantic Concepts for Multimedia Retrieval , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[10]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[11]  Jun Yang,et al.  CMU Informedia's TRECVID 2005 Skirmishes , 2005, TRECVID.

[12]  Tobun Dorbin Ng,et al.  Informedia at TRECVID 2003 : Analyzing and Searching Broadcast News Video , 2003, TRECVID.

[13]  Marcel Worring,et al.  Assessing User Behaviour in News Video Retrieval , 2005 .

[14]  Eero Sormunen,et al.  End-User Searching Challenges Indexing Practices in the Digital Newspaper Photo Archive , 2004, Information Retrieval.

[15]  Kerry Rodden,et al.  Does organisation by similarity assist image browsing? , 2001, CHI.

[16]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[17]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[18]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[19]  Rong Yan,et al.  Video Retrieval Based on Semantic Concepts , 2008, Proceedings of the IEEE.

[20]  Djoerd Hiemstra,et al.  Interactive Content-Based Retrieval Using Pre-computed Object-Object Similarities , 2004, CIVR.

[21]  Milind R. Naphade,et al.  Learning the semantics of multimedia queries and concepts from a small number of examples , 2005, MULTIMEDIA '05.

[22]  Jakob Nielsen,et al.  Heuristic Evaluation of Prototypes (individual) , 2022 .

[23]  Tao Tao,et al.  Regularized estimation of mixture models for robust pseudo-relevance feedback , 2006, SIGIR.

[24]  Paul Over,et al.  The TREC2001 Video Track: Information Retrieval on Digital Video Information , 2002, ECDL.

[25]  Paul A. Viola,et al.  Boosting Image Retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[26]  Alexander G. Hauptmann,et al.  The Use and Utility of High-Level Semantic Features in Video Retrieval , 2005, CIVR.

[27]  Henry Schneiderman,et al.  Learning Statistical Structure for Object Detection , 2003, CAIP.

[28]  ChengXiang Zhai,et al.  Probabilistic Relevance Models Based on Document and Query Generation , 2003 .

[29]  Norbert Fuhr,et al.  Probabilistic Models in Information Retrieval , 1992, Comput. J..

[30]  Michael G. Christel,et al.  Finding the right shots: assessing usability and performance of a digital video library interface , 2004, MULTIMEDIA '04.

[31]  Rong Yan,et al.  Extreme video retrieval: joint maximization of human and computer performance , 2006, MM '06.

[32]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[33]  Gang Wang,et al.  TRECVID 2004 Search and Feature Extraction Task by NUS PRIS , 2004, TRECVID.

[34]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[35]  Rong Yan,et al.  Probabilistic models for combining diverse knowledge sources in multimedia retrieval , 2006 .

[36]  Paul Over,et al.  TREC video retrieval evaluation TRECVID , 2008 .

[37]  W. Bruce Croft,et al.  Improving the effectiveness of information retrieval with local context analysis , 2000, TOIS.

[38]  Jun Yang,et al.  Naming every individual in news video monologues , 2004, MULTIMEDIA '04.

[39]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[40]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[41]  Rong Yan,et al.  Learning query-class dependent weights in automatic video retrieval , 2004, MULTIMEDIA '04.

[42]  Douglas B. Lenat,et al.  Mapping Ontologies into Cyc , 2002 .

[43]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[44]  Ophir Frieder,et al.  Surrogate scoring for improved metasearch precision , 2005, SIGIR '05.

[45]  Shih-Fu Chang,et al.  Automatic discovery of query-class-dependent models for multimodal search , 2005, MULTIMEDIA '05.

[46]  Michael G. Christel,et al.  Mining Novice User Activity with TRECVID Interactive Retrieval Tasks , 2006, CIVR.

[47]  Michael Collins,et al.  Discriminative Reranking for Natural Language Parsing , 2000, CL.

[48]  Carsten Peterson,et al.  A Mean Field Theory Learning Algorithm for Neural Networks , 1987, Complex Syst..

[49]  Sara Shatford,et al.  Analyzing the Subject of a Picture: A Theoretical Approach , 1986 .

[50]  John R. Smith,et al.  VideoAL: a novel end-to-end MPEG-7 video automatic labeling system , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[51]  Marcel Worring,et al.  A Learned Lexicon-Driven Paradigm for Interactive Video Retrieval , 2007, IEEE Transactions on Multimedia.

[52]  Marcel Worring,et al.  Assessing user behaviour in news video retrieval : Recent advances in image and video retrieval , 2005 .

[53]  Edward Y. Chang,et al.  Optimal multimodal fusion for multimedia data analysis , 2004, MULTIMEDIA '04.

[54]  Ben Taskar,et al.  Learning on the Test Data: Leveraging Unseen Features , 2003, ICML.

[55]  Wei-Hao Lin,et al.  News video classification using SVM-based multimodal classifiers and combination strategies , 2002, MULTIMEDIA '02.

[56]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[57]  Brendan J. Frey,et al.  Probabilistic multimedia objects (multijects): a novel approach to video indexing and retrieval in multimedia systems , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[58]  Rong Yan,et al.  Merging storyboard strategies and automatic retrieval for improving interactive video search , 2007, CIVR '07.

[59]  Toni Petersen,et al.  Guide to indexing and cataloging with the Art & architecture thesaurus , 1994 .

[60]  Dan I. Moldovan,et al.  Exploiting ontologies for automatic image annotation , 2005, SIGIR '05.

[61]  W. Bruce Croft,et al.  Using Probabilistic Models of Document Retrieval without Relevance Information , 1979, J. Documentation.

[62]  Ramesh Nallapati,et al.  Discriminative models for information retrieval , 2004, SIGIR '04.

[63]  Tat-Seng Chua,et al.  TRECVID 2005 by NUS PRIS , 2005, TRECVID.

[64]  Shih-Fu Chang,et al.  Combining text and audio-visual features in video indexing , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..