On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors

In this paper, to obtain an efficient parallel algorithm to solve sparse block-tridiagonal linear systems, stair matrices are used to construct some parallel polynomial approximate inverse preconditioners. These preconditioners are suitable when the desired goal is to maximize parallelism. Moreover, some theoretical results concerning these preconditioners are presented and how to construct preconditioners effectively for any nonsingular block tridiagonal H-matrices is also described. In addition, the validity of these preconditioners is illustrated with some numerical experiments arising from the second order elliptic partial differential equations and oil reservoir simulations.

[1]  O. Axelsson Iterative solution methods , 1995 .

[2]  J. Ortega Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.

[3]  Hao Lu Stair Matrices and Their Generalizations with Applications to Iterative Methods I: A Generalization of the Successive Overrelaxation Method , 1999, SIAM J. Numer. Anal..

[4]  L. Adams m-Step Preconditioned Conjugate Gradient Methods , 1985 .

[5]  Guo Chun-hua,et al.  Some results on sparse block factorization iterative methods , 1991 .

[6]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[7]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[8]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[9]  Ting-Zhu Huang,et al.  On some subclasses of P‐matrices , 2007, Numer. Linear Algebra Appl..

[10]  Rafael Bru,et al.  A preconditioned Conjugate Gradient Method on a distributed memory multiprocessor , 1995 .

[11]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[12]  Ting-Zhu Huang,et al.  On a new criterion for the H-matrix property , 2006, Appl. Math. Lett..

[13]  Loyce M. Adams,et al.  Additive polynomial preconditioners for parallel computers , 1989, Parallel Comput..

[14]  Zhong-Zhi Bai,et al.  On the Convergence of the Multisplitting Methods for the Linear Complementarity Problem , 1999, SIAM J. Matrix Anal. Appl..

[15]  T. Huckle Approximate sparsity patterns for the inverse of a matrix and preconditioning , 1999 .

[16]  Ting-Zhu Huang,et al.  An improvement on a new upper bound for moduli of eigenvalues of iterative matrices , 2006, Appl. Math. Comput..

[17]  Rafael Bru,et al.  Multisplitting Preconditioners Based on Incomplete Choleski Factorizations , 1995, SIAM J. Matrix Anal. Appl..

[18]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[19]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[20]  Robert Beauwens,et al.  On Sparse Block Factorization Iterative Methods , 1987 .

[21]  Ting-Zhu Huang,et al.  Inclusion sets for singular values , 2008 .

[22]  Jae Heon Yun Block ILU Preconditioners for a Nonsymmetric Block-Tridiagonal M-Matrix , 2000 .

[23]  Edmond Chow,et al.  Approximate Inverse Techniques for Block-Partitioned Matrices , 1997, SIAM J. Sci. Comput..

[24]  Ting-Zhu Huang,et al.  Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse , 2007 .

[25]  Chun-Hua Guo,et al.  Incomplete block factorization preconditioning for linear systems arising in the numerical solution of the Helmholtz equation , 1996 .

[26]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[27]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.