Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities

A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity we here establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation time. At longer times a crossover to a Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, that can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations.

[1]  M. Heidernätsch,et al.  Characterizing N-dimensional anisotropic Brownian motion by the distribution of diffusivities. , 2013, Journal of Chemical Physics.

[2]  R. Chakrabarti,et al.  Tracer diffusion in a sea of polymers with binding zones: mobile vs. frozen traps. , 2016, Soft matter.

[3]  Theo F. Nonnenmacher,et al.  Fox function representation of non-debye relaxation processes , 1993 .

[4]  A. Caspi,et al.  Enhanced diffusion in active intracellular transport. , 2000, Physical review letters.

[5]  R. Friedrich,et al.  Continuous-time random walks: simulation of continuous trajectories. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[7]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[8]  Ludovic Berthier,et al.  Universal nature of particle displacements close to glass and jamming transitions. , 2007, Physical review letters.

[9]  Fogedby Langevin equations for continuous time Lévy flights. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  O Dauchot,et al.  Subdiffusion and cage effect in a sheared granular material. , 2005, Physical review letters.

[11]  G. Kneller,et al.  Communication: Probing anomalous diffusion in frequency space. , 2015, Journal of Chemical Physics.

[12]  T. Franosch,et al.  Anomalous transport in the crowded world of biological cells , 2013, Reports on progress in physics. Physical Society.

[13]  C. Gardiner Stochastic Methods: A Handbook for the Natural and Social Sciences , 2009 .

[14]  D A Weitz,et al.  Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Daisuke Mizuno,et al.  Non-Gaussian athermal fluctuations in active gels , 2011 .

[16]  Paul A. Wiggins,et al.  Cytoplasmic dynamics reveals two modes of nucleoid-dependent mobility. , 2014, Biophysical journal.

[17]  Arshad Kudrolli,et al.  Diffusion and mixing in gravity-driven dense granular flows. , 2004, Physical review letters.

[18]  Iain M Young,et al.  Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level , 2009, Journal of The Royal Society Interface.

[19]  C. Beck Superstatistical brownian motion , 2005, cond-mat/0508263.

[20]  C. Wilhelm,et al.  In Vivo Determination of Fluctuating Forces during Endosome Trafficking Using a Combination of Active and Passive Microrheology , 2010, PloS one.

[21]  Wolfram Just,et al.  Brownian motion with dry friction: Fokker–Planck approach , 2010, 1008.3331.

[22]  Takuma Akimoto,et al.  Distributional behaviors of time-averaged observables in the Langevin equation with fluctuating diffusivity: Normal diffusion but anomalous fluctuations. , 2016, Physical Review E.

[23]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[24]  Sung Chul Bae,et al.  Anomalous yet Brownian , 2009, Proceedings of the National Academy of Sciences.

[25]  Timo Betz,et al.  Time-resolved microrheology of actively remodeling actomyosin networks , 2014 .

[26]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[27]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties , 2014 .

[28]  T C Lubensky,et al.  State-dependent diffusion: Thermodynamic consistency and its path integral formulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  R. Metzler,et al.  Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins , 2016 .

[30]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[31]  J. Klafter,et al.  Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force. , 2008, Physical review letters.

[32]  A. Tur,et al.  Diffusion in fluctuative medium , 1990 .

[33]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[34]  W. Kegel,et al.  Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions , 2000, Science.

[35]  R. Metzler,et al.  Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions , 2013 .

[36]  G. Kneller,et al.  Communication: consistent picture of lateral subdiffusion in lipid bilayers: molecular dynamics simulation and exact results. , 2011, The Journal of chemical physics.

[37]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[38]  I M Sokolov,et al.  From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.

[39]  Andrey G. Cherstvy,et al.  Quantifying non-ergodic dynamics of force-free granular gases. , 2015, Physical chemistry chemical physics : PCCP.

[40]  Aubrey V. Weigel,et al.  Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking , 2011, Proceedings of the National Academy of Sciences.

[41]  E. Piotrowski,et al.  Linear systems with randomly interrupted Gaussian white noise , 1993 .

[42]  H. Castillo,et al.  Local fluctuations in the ageing of a simple structural glass , 2006, cond-mat/0610857.

[43]  Arindam Chowdhury,et al.  Plasticization of poly(vinylpyrrolidone) thin films under ambient humidity: insight from single-molecule tracer diffusion dynamics. , 2013, Journal of Physical Chemistry B.

[44]  Andrey G. Cherstvy,et al.  Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. , 2013, Physical chemistry chemical physics : PCCP.

[45]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[46]  I. Goychuk Viscoelastic Subdiffusion: Generalized Langevin Equation Approach , 2012 .

[47]  G. Radons,et al.  Subdiffusive continuous time random walks and weak ergodicity breaking analyzed with the distribution of generalized diffusivities , 2013 .

[48]  Arak M. Mathai,et al.  The H-Function with Applications in Statistics and Other Disciplines. , 1981 .

[49]  Schofield,et al.  Three-dimensional direct imaging of structural relaxation near the colloidal glass transition , 2000, Science.

[50]  Jr. Thad Dankel On the distribution of the integrated square of the Ornstein-Unlenbeck process , 1991 .

[51]  A. Chechkin,et al.  Correlated continuous time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics , 2013, 1308.5058.

[52]  Sung Chul Bae,et al.  When Brownian diffusion is not Gaussian. , 2012, Nature Materials.

[53]  Ralf Metzler,et al.  Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. , 2014, Physical chemistry chemical physics : PCCP.

[54]  Takashi Uneyama,et al.  Fluctuation analysis of time-averaged mean-square displacement for the Langevin equation with time-dependent and fluctuating diffusivity. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  I. Sokolov Lévy flights from a continuous-time process. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  M. Lewenstein,et al.  Nonergodic subdiffusion from Brownian motion in an inhomogeneous medium. , 2014, Physical review letters.

[57]  Igor M Sokolov,et al.  Continuous-time random walk with correlated waiting times. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Niels Grønbech-Jensen,et al.  Langevin dynamics in inhomogeneous media: re-examining the Itô-Stratonovich dilemma. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Andrey G. Cherstvy,et al.  Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes. , 2016, Physical chemistry chemical physics : PCCP.

[60]  F C MacKintosh,et al.  Velocity distributions in dissipative granular gases. , 2004, Physical review letters.

[61]  W. Sutherland,et al.  LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin , 1905 .

[62]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[63]  G. Radons,et al.  How to compare diffusion processes assessed by single-particle tracking and pulsed field gradient nuclear magnetic resonance. , 2010, The Journal of chemical physics.

[64]  F. Jenko,et al.  Langevin approach to fractional diffusion equations including inertial effects. , 2007, Journal of Physical Chemistry B.

[65]  R. Metzler,et al.  Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. , 2012, Physical review letters.

[66]  Niels Grønbech-Jensen,et al.  Fluctuation–Dissipation Relation for Systems with Spatially Varying Friction , 2014, 1402.4598.

[67]  R. Metzler,et al.  Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii , 2015, Scientific Reports.

[68]  P. Hänggi,et al.  Diffusion of Brownian particles governed by fluctuating friction , 2000 .

[69]  Andrey G. Cherstvy,et al.  Non-Brownian diffusion in lipid membranes: Experiments and simulations. , 2016, Biochimica et biophysica acta.

[70]  S. C. Lim,et al.  Self-similar Gaussian processes for modeling anomalous diffusion. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[72]  Andrey G. Cherstvy,et al.  Ageing and confinement in non-ergodic heterogeneous diffusion processes , 2014 .

[73]  A. Fulínski,et al.  Anomalous diffusion and weak nonergodicity. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  R. Metzler,et al.  Manipulation and Motion of Organelles and Single Molecules in Living Cells. , 2017, Chemical reviews.

[75]  K. L. Sebastian,et al.  Diffusion in a Crowded, Rearranging Environment. , 2016, The journal of physical chemistry. B.

[76]  P. Talkner,et al.  BROWNIAN MOTION IN A FLUCTUATING MEDIUM , 1998 .

[77]  M. Lewenstein,et al.  Weak Ergodicity Breaking of Receptor Motion in Living Cells Stemming from Random Diffusivity , 2014, 1407.2552.

[78]  M. Weiss,et al.  Elucidating the origin of anomalous diffusion in crowded fluids. , 2009, Physical review letters.

[79]  Daniel S. Banks,et al.  Anomalous diffusion of proteins due to molecular crowding. , 2005, Biophysical journal.

[80]  Gary W Slater,et al.  Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion. , 2014, Physical review letters.

[81]  R. Friedrich,et al.  Joint probability distributions for a class of non-Markovian processes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Anna V. Taubenberger,et al.  A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy , 2016, eLife.

[83]  N. Brilliantov,et al.  Intermediate regimes in granular Brownian motion: superdiffusion and subdiffusion. , 2012, Physical Review Letters.

[84]  Andrey G. Cherstvy,et al.  Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion , 2016, Scientific Reports.

[85]  G. Papanicolaou,et al.  Derivatives in Financial Markets with Stochastic Volatility , 2000 .

[86]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[87]  Holger Kantz,et al.  Distributed-order diffusion equations and multifractality: Models and solutions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  Andrey G. Cherstvy,et al.  Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes , 2013, 1303.5533.

[89]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[90]  David R Reichman,et al.  Spatial dimension and the dynamics of supercooled liquids , 2009, Proceedings of the National Academy of Sciences.

[91]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[92]  Andrey G. Cherstvy,et al.  Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity. , 2013, Soft matter.

[93]  A. Baule,et al.  A fractional diffusion equation for two-point probability distributions of a continuous-time random walk , 2008, 0808.1194.

[94]  Enrico Gratton,et al.  Probing short-range protein Brownian motion in the cytoplasm of living cells , 2014, Nature Communications.

[95]  J. Bennett,et al.  ON THE PARTICLES CONTAINED IN THE POLLEN OF PLANTS; , 2004 .

[96]  M. Yasui,et al.  Non-Gaussian fluctuations resulting from power-law trapping in a lipid bilayer. , 2011, Physical review letters.

[97]  A. Kuznetsov,et al.  Intracellular transport of insulin granules is a subordinated random walk , 2013, Proceedings of the National Academy of Sciences.

[98]  Christian Beck,et al.  Dynamical Foundations of Nonextensive Statistical Mechanics , 2001, cond-mat/0105374.

[99]  J. Theriot,et al.  Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. , 2010, Physical review letters.

[100]  C. Jacobs-Wagner,et al.  Physical Nature of the Bacterial Cytoplasm , 2014 .

[101]  Chanjoong Kim,et al.  Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids. , 2013, Physical review letters.

[102]  Thomas A. Rietz,et al.  Price dynamics in political prediction markets , 2009, Proceedings of the National Academy of Sciences.

[103]  R. Metzler,et al.  In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. , 2010, Physical review letters.