A Four-step Iterative Design Optimization Technique for DLHL IMPATTs
暂无分享,去创建一个
Aritra Acharyya | J. P. Banerjee | Monojit Mitra | Suranjana Banerjee | A. Acharyya | Suranjana Banerjee | J. Banerjee | M. Mitra
[1] T. A. Midford,et al. Millimeter-Wave CW IMPATT Diodes and Oscillators , 1979 .
[2] F. Schäffler,et al. Comparison of theoretical and experimental 60 GHz silicon IMPATT diode performance , 1991 .
[3] A. Acharyya,et al. Influence of skin effect on the series resistance of millimeter-wave IMPATT devices , 2013 .
[4] C. Canali,et al. Drift velocity of electrons and holes and associated anisotropic effects in silicon , 1971 .
[5] Marko Becker,et al. Principles Of Semiconductor Devices , 2016 .
[6] C. Bozler,et al. High‐efficiency ion‐implanted lo‐hi‐lo GaAs IMPATT diodes , 1976 .
[7] F. Schäffler,et al. D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz , 1996 .
[8] R. L. Johnston,et al. Double-drift-region (p + pnn + ) avalanche diode oscillators , 1970 .
[9] A. Acharyya,et al. Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device , 2013 .
[10] Design considerations of high-efficiency double-drift silicon IMPATT diodes , 1977 .
[11] J.-F. Luy,et al. A 90-GHz double-drift IMPATT diode made with Si MBE , 1987, IEEE Transactions on Electron Devices.
[12] Aritra Acharyya,et al. Diamond Based DDR IMPATTs: Prospects and Potentiality as Millimeter-Wave Source at 94 GHz Atmospheric Window , 2013 .
[13] R. Goldwasser,et al. High‐efficiency GaAs lo‐hi‐lo IMPATT devices by liquid phase epitaxy for X band , 1974 .
[14] W. N. Grant. Electron and hole ionization rates in epitaxial silicon at high electric fields , 1973 .
[15] S. Dimitrijev. Principles of semiconductor devices , 2005 .
[16] A. Acharyya,et al. Large-Signal Simulation of 94 GHz Pulsed Silicon DDR IMPATTs Including the Temperature Transient Effect , 2012 .