Exact analysis of surface field reduction due to field-emitted vacuum space charge, in parallel-plane geometry, using simple dimensionless equations

This paper reports (a) a simple dimensionless equation relating to field-emitted vacuum space charge (FEVSC) in parallel-plane geometry, namely 9ζ2θ2−3θ−4ζ+3=0, where ζ is the FEVSC “strength” and θ is the reduction in emitter surface field (θ=field-with/field-without FEVSC), and (b) the formula j=9θ2ζ/4, where j is the ratio of emitted current density JP to that predicted by Child’s law. These equations apply to any charged particle, positive or negative, emitted with near-zero kinetic energy. They yield existing and additional basic formulas in planar FEVSC theory. The first equation also yields the well-known cubic equation describing the relationship between JP and applied voltage; a method of analytical solution is described. Illustrative FEVSC effects in a liquid metal ion source and in field electron emission are discussed. For Fowler–Nordheim plots, a “turn-over” effect is predicted in the high FEVSC limit. The higher the voltage-to-local-field conversion factor for the emitter concerned, then the...

[1]  J. Orloff Handbook of Charged Particle Optics, Second Edition , 2008 .

[2]  Richard G. Forbes,et al.  On the need for a tunneling pre-factor in Fowler-Nordheim tunneling theory , 2008 .

[3]  T. Radlička,et al.  Coulomb interactions in Ga LMIS. , 2008, Ultramicroscopy.

[4]  J. Deane,et al.  Reformulation of the standard theory of Fowler–Nordheim tunnelling and cold field electron emission , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  K. Jensen General formulation of thermal, field, and photoinduced electron emission , 2007 .

[6]  R. Forbes The physics of generalized Fowler-Nordheim-type equations , 2007, 2007 IEEE 20th International Vacuum Nanoelectronics Conference.

[7]  F. Rüdenauer Field emission devices for space applications , 2007 .

[8]  L. Ang,et al.  Transition of field emission to space-charge-limited emission in a nanogap , 2006 .

[9]  G. Mesyats,et al.  On the limiting density of field emission current from metals , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[10]  Z. Insepov,et al.  Triggers for RF breakdown , 2005 .

[11]  George N. Fursey,et al.  Field Emission in Vacuum Microelectronics , 2005 .

[12]  C. L. Frenzen,et al.  A simple physical derivation of Child–Langmuir space-charge-limited emission using vacuum capacitance , 2005 .

[13]  V. Pavlov Effect of the space charge of emitted electrons on field electron emission , 2004 .

[14]  Y. Lamy,et al.  High brightness electron beam from a multi-walled carbon nanotube , 2002, Nature.

[15]  John W. Luginsland,et al.  Beyond the Child–Langmuir law: A review of recent results on multidimensional space-charge-limited flow , 2002 .

[16]  R. A. Murphy,et al.  Cold Cathode Microwave Devices , 2002 .

[17]  H. Schamel,et al.  The true nature of space-charge-limited currents in electron vacuum diodes: A Lagrangian revision with corrections , 2001 .

[18]  K. Jensen Exchange-correlation, dipole, and image charge potentials for electron sources: Temperature and field variation of the barrier height , 1999 .

[19]  R. Forbes Use of a spreadsheet for Fowler-Nordheim equation calculations , 1998, Eleventh International Vacuum Microelectronics Conference. IVMC'98 (Cat. No.98TH8382).

[20]  Kevin L. Jensen,et al.  Space charge effects on the current-voltage characteristics of gated field emitter arrays , 1997 .

[21]  K. Jensen,et al.  Electron emission from a single spindt-type field emitter: Comparison of theory with experiment , 1997 .

[22]  K. F. Wojciechowski,et al.  Metal Surface Electron Physics , 1996 .

[23]  I. Brodie,et al.  Vacuum microelectronic devices , 1994, Proc. IEEE.

[24]  Y. Lau,et al.  Electron emission: From the Fowler–Nordheim relation to the Child–Langmuir law , 1994 .

[25]  G. V. Veen Space‐charge effects in Spindt‐type field emission cathodes , 1994 .

[26]  Weston A. Anderson,et al.  Role of space charge in field emission cathodes , 1993 .

[27]  Z. Cui,et al.  Optimum geometry and space-charge effects in vacuum microelectronics devices , 1993 .

[28]  J. Mora,et al.  The effect of charge emission from electrified liquid cones , 1992, Journal of Fluid Mechanics.

[29]  R. Forbes,et al.  Calculation of the shape of the liquid cone in a liquid-metal ion source , 1991 .

[30]  G. H. Jansen Coulomb Interactions in Particle Beams , 1988 .

[31]  G. Mair Theoretical determination of current-voltage curves for liquid metal ion sources , 1984 .

[32]  L. Swanson,et al.  Shape of a liquid metal ion source , 1984 .

[33]  G. Mair Space-charge effects in liquid metal ion sources , 1982 .

[34]  N. M. Miskovsky,et al.  Space-charge effects in liquid metal ion sources of different geometries , 1982 .

[35]  C. Wheeler Analysis of the planar field-emission diode , 1974 .

[36]  C. Wheeler Space charge limited field emission in a plane parallel electrode geometry , 1973 .

[37]  R. Nowicki Influence of space-charge on potential barrier in field emission , 1967 .

[38]  P. Chatterton A theoretical study of field emission initiated vacuum breakdown , 1966 .

[39]  P. H. Cutler,et al.  The use of a new surface potential model in the theory and field emission , 1964 .

[40]  I. Itzkan Solutions of the Equations of Space Charge Flow for Radial Flow between Concentric Spherical Electrodes , 1960 .

[41]  R. H. Good,et al.  Thermionic Emission, Field Emission, and the Transition Region , 1956 .

[42]  T. Lewis Some Factors Influencing Field Emission and the Fowler-Nordheim Law , 1955 .

[43]  W. P. Dyke,et al.  SPACE-CHARGE EFFECTS IN FIELD EMISSION , 1953 .

[44]  W. P. Dyke,et al.  Field Emission: Large Current Densities, Space Charge, and the Vacuum Arc , 1953 .

[45]  L. Page,et al.  Diode Space Charge for Any Initial Velocity and Current , 1949 .

[46]  F. R. Abbott,et al.  The Range and Validity of the Field Current Equation , 1939 .

[47]  R. Cockburn The variation of voltage-distribution and of electron transit-time with current in the planar diode , 1935 .

[48]  B. S. Gossling,et al.  Further studies in the emission of electrons from cold metals , 1929 .

[49]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[50]  Irving Langmuir,et al.  The Effect of Space Charge and Initial Velocities on the Potential Distribution and Thermionic Current between Parallel Plane Electrodes , 1923 .

[51]  Irving Langmuir,et al.  The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum , 1913 .

[52]  G. Sandonato,et al.  Experimental study of vacuum diodes under partial space-charge regime , 2004 .

[53]  Alfred Wagner,et al.  High Resolution Focused Ion Beams: FIB and Its Applications , 2003 .

[54]  P. D. Prewett,et al.  Focused ion beams from liquid metal ion sources , 1991 .

[55]  Hawkes Advances in electronics and electron physics , 1990 .

[56]  H. Gray,et al.  Vacuum microelectronics , 1989, International Technical Digest on Electron Devices Meeting.

[57]  H. Ivey Space Charge Limited Currents , 1954 .

[58]  G. Jaffé Zur Theorie der Hochvakuumentladung , 1920 .