Polymers of the Cytoskeleton

[1]  Carsten Janke,et al.  Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton , 2010, Trends in Neurosciences.

[2]  David A Weitz,et al.  Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics. , 2010, Journal of molecular biology.

[3]  Jessica K. Polka,et al.  Microtubule nucleating γTuSC assembles structures with 13-fold microtubule-like symmetry , 2010, Nature.

[4]  Joshua W. Shaevitz,et al.  Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria , 2010, Proceedings of the National Academy of Sciences.

[5]  U. Aebi,et al.  Atomic structure of vimentin coil 2. , 2010, Journal of structural biology.

[6]  T. Svitkina,et al.  Arginylation Regulates Intracellular Actin Polymer Level by Modulating Actin Properties and Binding of Capping and Severing Proteins , 2010, Molecular biology of the cell.

[7]  R. Dominguez Structural insights into de novo actin polymerization. , 2010, Current opinion in structural biology.

[8]  T. Ikegami,et al.  A Common Substrate Recognition Mode Conserved between Katanin p60 and VPS4 Governs Microtubule Severing and Membrane Skeleton Reorganization* , 2010, The Journal of Biological Chemistry.

[9]  S. Thiem,et al.  Ion-dependent Polymerization Differences between Mammalian β- and γ-Nonmuscle Actin Isoforms* , 2010, The Journal of Biological Chemistry.

[10]  D. Mizuno,et al.  Nonlocal fluctuation correlations in active gels. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  F. Nakamura,et al.  Filamin A is required for vimentin-mediated cell adhesion and spreading. , 2010, American journal of physiology. Cell physiology.

[12]  K. Slep Structural and mechanistic insights into microtubule end-binding proteins. , 2010, Current opinion in cell biology.

[13]  P. Aspenström Formin-binding proteins: modulators of formin-dependent actin polymerization. , 2010, Biochimica et biophysica acta.

[14]  R. Lipowsky,et al.  Coupling of actin hydrolysis and polymerization: Reduced description with two nucleotide states , 2010, 1102.2018.

[15]  David A Weitz,et al.  Intracellular transport by active diffusion. , 2009, Trends in cell biology.

[16]  H. Kueh,et al.  Structural Plasticity in Actin and Tubulin Polymer Dynamics , 2009, Science.

[17]  Rakwoo Chang,et al.  Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture. , 2009, Journal of molecular biology.

[18]  Anthony A. Hyman,et al.  Growth, fluctuation and switching at microtubule plus ends , 2009, Nature Reviews Molecular Cell Biology.

[19]  Reinhard Lipowsky,et al.  Actin polymerization and depolymerization coupled to cooperative hydrolysis. , 2009, Physical review letters.

[20]  F. Leermakers,et al.  On the polyelectrolyte brush model of neurofilaments , 2009 .

[21]  B. Helfand,et al.  Introducing intermediate filaments: from discovery to disease. , 2009, The Journal of clinical investigation.

[22]  U. Aebi,et al.  Intermediate filaments: primary determinants of cell architecture and plasticity. , 2009, The Journal of clinical investigation.

[23]  E. D. L. Cruz How cofilin severs an actin filament , 2009, Biophysical Reviews.

[24]  J. Langowski,et al.  Vimentin intermediate filament formation: in vitro measurement and mathematical modeling of the filament length distribution during assembly. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[25]  T. Tsujiuchi,et al.  Post‐translational modifications of tubulin in the nervous system , 2009, Journal of neurochemistry.

[26]  Daisuke Mizuno,et al.  High-resolution probing of cellular force transmission. , 2009, Physical review letters.

[27]  A. Galińska-Rakoczy,et al.  New aspects of the spontaneous polymerization of actin in the presence of salts. , 2009, Journal of molecular biology.

[28]  F. Brooks,et al.  Nonequilibrium actin polymerization treated by a truncated rate-equation method. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  P. Lappalainen,et al.  The effects of ADF/cofilin and profilin on the conformation of the ATP-binding cleft of monomeric actin. , 2009, Biophysical journal.

[30]  C. Broedersz,et al.  Elasticity in ionically cross-linked neurofilament networks. , 2009, Biophysical journal.

[31]  Gary G. Borisy,et al.  Mammalian end binding proteins control persistent microtubule growth , 2009, The Journal of cell biology.

[32]  Ueli Aebi,et al.  Near-UV circular dichroism reveals structural transitions of vimentin subunits during intermediate filament assembly. , 2009, Journal of molecular biology.

[33]  F. MacKintosh,et al.  The mechanics and fluctuation spectrum of active gels. , 2009, The journal of physical chemistry. B.

[34]  Stéphanie Portet,et al.  An in vivo intermediate filament assembly model. , 2008, Mathematical biosciences and engineering : MBE.

[35]  David A. Weitz,et al.  Cytoplasmic diffusion: molecular motors mix it up , 2008, The Journal of cell biology.

[36]  M. C. Marchetti,et al.  Mechanical response of active gels , 2008, 0807.3031.

[37]  G. Barkema,et al.  Monte Carlo study of multiply crosslinked semiflexible polymer networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Joseph Fass,et al.  Stochastic simulation of actin dynamics reveals the role of annealing and fragmentation. , 2008, Journal of theoretical biology.

[39]  Mary C Boyce,et al.  Constitutive modeling of the stress-strain behavior of F-actin filament networks. , 2008, Acta biomaterialia.

[40]  L Mahadevan,et al.  A quantitative analysis of contractility in active cytoskeletal protein networks. , 2008, Biophysical journal.

[41]  I. Arnal,et al.  EB1 regulates microtubule dynamics and tubulin sheet closure in vitro , 2008, Nature Cell Biology.

[42]  T. Shea,et al.  Regulation of neurofilament dynamics by phosphorylation , 2008, The European journal of neuroscience.

[43]  Hailong Lu,et al.  Myosin V and Kinesin act as tethers to enhance each others' processivity , 2008, Proceedings of the National Academy of Sciences.

[44]  D. Sept Microtubule Polymerization: One Step at a Time , 2007, Current Biology.

[45]  F. Leermakers,et al.  Effect of the ionic strength and pH on the equilibrium structure of a neurofilament brush. , 2007, Biophysical journal.

[46]  David A Weitz,et al.  Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking. , 2007, Biophysical journal.

[47]  Ueli Aebi,et al.  A Quantitative Kinetic Model for the in Vitro Assembly of Intermediate Filaments from Tetrameric Vimentin* , 2007, Journal of Biological Chemistry.

[48]  Sebastian Rammensee,et al.  Softness, strength and self-repair in intermediate filament networks. , 2007, Experimental cell research.

[49]  F. MacKintosh,et al.  Nonequilibrium mechanics and dynamics of motor-activated gels. , 2007, Physical review letters.

[50]  P. Janmey,et al.  Mechanical and structural properties of in vitro neurofilament hydrogels , 2007, European Biophysics Journal.

[51]  F. MacKintosh,et al.  Nonequilibrium Mechanics of Active Cytoskeletal Networks , 2007, Science.

[52]  Daniel A. Fletcher,et al.  Reversible stress softening of actin networks , 2007, Nature.

[53]  I. Ringel,et al.  Antagonistic effects of cofilin, beryllium fluoride complex, and phalloidin on subdomain 2 and nucleotide-binding cleft in F-actin. , 2006, Biophysical journal.

[54]  François Nédélec,et al.  Modelling microtubule patterns , 2006, Nature Cell Biology.

[55]  J. M. Sancho,et al.  Kinesin as an Electrostatic Machine , 2006, Journal of biological physics.

[56]  J. Fredberg,et al.  Fast and slow dynamics of the cytoskeleton , 2006, Nature Materials.

[57]  Timothy J. Mitchison,et al.  Microtubule dynamic instability , 2006, Current Biology.

[58]  J. Yates,et al.  Arginylation of ß-Actin Regulates Actin Cytoskeleton and Cell Motility , 2006, Science.

[59]  M. Omary,et al.  "Heads and tails" of intermediate filament phosphorylation: multiple sites and functional insights. , 2006, Trends in biochemical sciences.

[60]  Donald E. Ingber,et al.  Jcb: Article Introduction , 2002 .

[61]  E. Muto,et al.  Dielectric measurement of individual microtubules using the electroorientation method. , 2006, Biophysical journal.

[62]  F. MacKintosh,et al.  High-frequency stress relaxation in semiflexible polymer solutions and networks. , 2006, Physical review letters.

[63]  Andreas R. Bausch,et al.  A bottom-up approach to cell mechanics , 2006 .

[64]  M. Inagaki,et al.  Regulatory mechanisms and functions of intermediate filaments: A study using site‐ and phosphorylation state‐specific antibodies , 2006, Cancer science.

[65]  R. Nixon,et al.  Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo , 2006, Neuroscience Letters.

[66]  E. Meyhöfer,et al.  The E-hook of tubulin interacts with kinesin's head to increase processivity and speed. , 2005, Biophysical journal.

[67]  Ben Fabry,et al.  Cytoskeletal remodelling and slow dynamics in the living cell , 2005, Nature materials.

[68]  S. Müller,et al.  Characterization of the in vitro co-assembly process of the intermediate filament proteins vimentin and desmin: mixed polymers at all stages of assembly. , 2005, European journal of cell biology.

[69]  T. Roberts Major sperm protein , 2005, Current Biology.

[70]  P. Onck,et al.  Alternative explanation of stiffening in cross-linked semiflexible networks. , 2005, Physical review letters.

[71]  S. Halpain,et al.  The MAP2/Tau family of microtubule-associated proteins , 2004, Genome Biology.

[72]  Robert D. Goldman,et al.  Intermediate filaments mediate cytoskeletal crosstalk , 2004, Nature Reviews Molecular Cell Biology.

[73]  Ueli Aebi,et al.  Molecular and biophysical characterization of assembly-starter units of human vimentin. , 2004, Journal of molecular biology.

[74]  P. Janmey,et al.  Nonlinear elasticity in biological gels , 2004, Nature.

[75]  Hawoong Jeong,et al.  Role of the cytoskeleton in signaling networks , 2004, Journal of Cell Science.

[76]  D. Weitz,et al.  Elastic Behavior of Cross-Linked and Bundled Actin Networks , 2004, Science.

[77]  J. Ševčík,et al.  Actin-binding domain of mouse plectin. Crystal structure and binding to vimentin. , 2004, European journal of biochemistry.

[78]  Robert D Goldman,et al.  Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments , 2004, Journal of Cell Science.

[79]  C. Jacobs-Wagner,et al.  The Bacterial Cytoskeleton An Intermediate Filament-Like Function in Cell Shape , 2003, Cell.

[80]  T. Gotow,et al.  The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate , 2003, The Journal of cell biology.

[81]  P. Graumann,et al.  Actin-like Proteins MreB and Mbl from Bacillus subtilis Are Required for Bipolar Positioning of Replication Origins , 2003, Current Biology.

[82]  Charles Boone,et al.  Formin Leaky Cap Allows Elongation in the Presence of Tight Capping Proteins , 2003, Current Biology.

[83]  F. MacKintosh,et al.  Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  B. Helfand,et al.  Rapid transport of neural intermediate filament protein , 2003, Journal of Cell Science.

[85]  M Cristina Marchetti,et al.  Instabilities of isotropic solutions of active polar filaments. , 2003, Physical review letters.

[86]  C. D. dos Remedios,et al.  Actin binding proteins: regulation of cytoskeletal microfilaments. , 2003, Physiological reviews.

[87]  Erwin Frey,et al.  Elasticity of stiff polymer networks. , 2003, Physical review letters.

[88]  T C Lubensky,et al.  Microrheology, stress fluctuations, and active behavior of living cells. , 2003, Physical review letters.

[89]  P. Janmey,et al.  Domain unfolding in neurofilament sidearms: effects of phosphorylation and ATP , 2002, FEBS letters.

[90]  Sanjay Kumar,et al.  Relating interactions between neurofilaments to the structure of axonal neurofilament distributions through polymer brush models. , 2002, Biophysical journal.

[91]  D. Smith,et al.  Active fluidization of polymer networks through molecular motors , 2002, Nature.

[92]  E. Andrianantoandro,et al.  Kinetic mechanism of end-to-end annealing of actin filaments. , 2001, Journal of molecular biology.

[93]  S. Leibler,et al.  Physical Properties Determining Self-Organization of Motors and Microtubules , 2001, Science.

[94]  A. Ajdari,et al.  Viscoelasticity of solutions of motile polymers. , 2001, Physical review letters.

[95]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[96]  Ronald D. Vale,et al.  Engineering the Processive Run Length of the Kinesin Motor , 2000, The Journal of cell biology.

[97]  K. Lange Microvillar ion channels: cytoskeletal modulation of ion fluxes. , 2000, Journal of theoretical biology.

[98]  E. Fedorov,et al.  Mapping the functional surface of domain 2 in the gelsolin superfamily. , 2000, Biochemistry.

[99]  P. Janmey,et al.  The polyelectrolyte behavior of actin filaments: a 25Mg NMR study. , 1999, Biochemistry.

[100]  J. Shah,et al.  Brains and brawn: plectin as regulator and reinforcer of the cytoskeleton. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[101]  David C. Morse,et al.  Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response , 1998 .

[102]  David C. Morse,et al.  Viscoelasticity of Concentrated Isotropic Solutions of Semiflexible Polymers. 1. Model and Stress Tensor , 1998 .

[103]  F. MacKintosh,et al.  Dynamic shear modulus of a semiflexible polymer network , 1998 .

[104]  K. Titani,et al.  Dry stress-induced phosphorylation of Physarum actin. , 1998, Biochemical and biophysical research communications.

[105]  E. Sackmann,et al.  Entanglement, Elasticity, and Viscous Relaxation of Actin Solutions , 1997, cond-mat/9712037.

[106]  F. MacKintosh,et al.  Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations , 1997, cond-mat/9709228.

[107]  S. Leibler,et al.  Self-organization of microtubules and motors , 1997, Nature.

[108]  S. Pawlowski,et al.  Rescue of cardiac α-actin-deficient mice by enteric smooth muscle γ-actin , 1997 .

[109]  Maggs,et al.  Subdiffusion and Anomalous Local Viscoelasticity in Actin Networks. , 1996, Physical review letters.

[110]  P. Janmey,et al.  Phalloidin binding and rheological differences among actin isoforms. , 1996, Biochemistry.

[111]  T. Pollard,et al.  Kinetics and thermodynamics of phalloidin binding to actin filaments from three divergent species. , 1996, Biochemistry.

[112]  L. Eichinger,et al.  A novel type of protein kinase phosphorylates actin in the actin‐fragmin complex. , 1996, The EMBO journal.

[113]  P. Steinert,et al.  The function of intermediate filaments in cell shape and cytoskeletal integrity , 1996, The Journal of cell biology.

[114]  C F Dewey,et al.  Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. , 1996, Biophysical journal.

[115]  P. Janmey,et al.  Mechanical Effects of Neurofilament Cross-bridges , 1996, The Journal of Biological Chemistry.

[116]  Erwin Frey,et al.  Force-Extension Relation and Plateau Modulus for Wormlike Chains. , 1996, Physical review letters.

[117]  P G Allen,et al.  Binding of Phosphate, Aluminum Fluoride, or Beryllium Fluoride to F-actin Inhibits Severing by Gelsolin (*) , 1996, The Journal of Biological Chemistry.

[118]  A. C. Maggs,et al.  Dynamics and rheology of actin solutions , 1996 .

[119]  P. Janmey,et al.  The specific NH2-terminal sequence Ac-EEED of alpha-smooth muscle actin plays a role in polymerization in vitro and in vivo , 1995, The Journal of cell biology.

[120]  P. Janmey,et al.  Elasticity of semiflexible biopolymer networks. , 1995, Physical review letters.

[121]  S. Fuller,et al.  Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates , 1995, The Journal of cell biology.

[122]  H. Erickson,et al.  FtsZ, a prokaryotic homolog of tubulin? , 1995, Cell.

[123]  D Lerche,et al.  The mechanical properties of actin gels. Elastic modulus and filament motions. , 1994, The Journal of biological chemistry.

[124]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[125]  P. Janmey,et al.  Selective binding of gelsolin to actin monomers containing ADP. , 1993, The Journal of biological chemistry.

[126]  D. Drummond,et al.  Molecular genetics of actin function. , 1993, The Biochemical journal.

[127]  J. Howard,et al.  Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape , 1993, The Journal of cell biology.

[128]  P. Janmey,et al.  Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. , 1992, The Journal of biological chemistry.

[129]  G. Borisy,et al.  Steady state dynamics of intermediate filament networks , 1992, The Journal of cell biology.

[130]  L. Binder,et al.  Identification of the intermediate filament-associated protein gyronemin as filamin. Implications for a novel mechanism of cytoskeletal interaction. , 1992, Journal of cell science.

[131]  A. Wegner,et al.  Mechanism of the insertion of actin monomers between the barbed ends of actin filaments and barbed end-bound insertin , 1991, Journal of Muscle Research & Cell Motility.

[132]  A. Wegner,et al.  Kinetic evidence for insertion of actin monomers between the barbed ends of actin filaments and barbed end-bound insertin, a protein purified from smooth muscle. , 1989, Journal of molecular biology.

[133]  Christoph F. Schmidt,et al.  Chain dynamics, mesh size, and diffusive transport in networks of polymerized actin. A quasielastic light scattering and microfluorescence study , 1989 .

[134]  E. Fifková,et al.  Distribution of MAP2 in dendritic spines and its colocalization with actin. An immunogold electron-microscope study. , 1989, Cell and tissue research.

[135]  R. Williams,et al.  End-to-end joining of taxol-stabilized GDP-containing microtubules. , 1989, The Journal of biological chemistry.

[136]  K. Aktories,et al.  ADP-ribosylated actin caps the barbed ends of actin filaments. , 1988, The Journal of biological chemistry.

[137]  T. Pollard,et al.  Direct demonstration of actin filament annealing in vitro , 1988, The Journal of cell biology.

[138]  M. Inagaki,et al.  Intermediate filament reconstitution in vitro. The role of phosphorylation on the assembly-disassembly of desmin. , 1988, The Journal of biological chemistry.

[139]  D. Murphy,et al.  The relative contributions of polymer annealing and subunit exchange to microtubule dynamics in vitro , 1987, The Journal of cell biology.

[140]  M. Caplow,et al.  Differentiation between dynamic instability and end-to-end annealing models for length changes of steady-state microtubules. , 1986, The Journal of biological chemistry.

[141]  T D Pollard,et al.  Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments , 1986, The Journal of cell biology.

[142]  P. Sheterline,et al.  Cytoplasmic concentrations of inorganic phosphate affect the critical concentration for assembly of actin in the presence of cytochalasin D or ADP. , 1986, Journal of molecular biology.

[143]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[144]  U. Lindberg,et al.  Separation of non-muscle isoactins in the free form or as profilactin complexes. , 1984, The Journal of biological chemistry.

[145]  G. Isenberg,et al.  12-fold difference between the critical monomer concentrations of the two ends of actin filaments in physiological salt conditions. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[146]  Theo Odijk,et al.  The statistics and dynamics of confined or entangled stiff polymers , 1983 .

[147]  P. Robinson,et al.  The in vitro phosphorylation of actin from rat cerebral cortex , 1983, Neurochemical Research.

[148]  A. Wegner Treadmilling of actin at physiological salt concentrations. An analysis of the critical concentrations of actin filaments. , 1982, Journal of molecular biology.

[149]  E. Lazarides,et al.  Phosphorylation of intermediate filament proteins by cAMP-dependent protein kinases , 1981, Cell.

[150]  E. Grazi,et al.  Phosphorylation of actin and removal of its inhibitory activity on pancreatic DNAase I by liver plasma membranes , 1979, FEBS letters.

[151]  J. Engel,et al.  The polymerization reaction of muscle actin , 1977, Molecular and Cellular Biochemistry.

[152]  A. Wegner The mechanism of ATP hydrolysis by polymer actin. , 1977, Biophysical chemistry.

[153]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[154]  J. Engel,et al.  Kinetics of the cooperative association of actin to actin filaments. , 1975, Biophysical chemistry.

[155]  J. Kovac,et al.  Polymer conformational statistics. III. Modified Gaussian models of stiff chains , 1973 .

[156]  K. Green,et al.  Intermediate filament associated proteins. , 2005, Advances in protein chemistry.

[157]  L. Amos,et al.  Microtubules and maps. , 2005, Advances in protein chemistry.

[158]  D. Ingber In search of cellular control: Signal transduction in context , 1998, Journal of cellular biochemistry.

[159]  A. Wegner,et al.  Derivation of insertin. , 1998, Cell motility and the cytoskeleton.

[160]  A. Hyman,et al.  Microtubule structure and dynamics. , 1997, Current opinion in cell biology.

[161]  M. Carlier Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules. , 1989, International review of cytology.

[162]  T D Pollard,et al.  Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. , 1986, Annual review of biochemistry.

[163]  K. Zechel Localization of the charge differences in the actins of rabbit skeletal muscle and chicken gizzard by two-dimensional gel electrophoretic analysis of tryptic fragments. , 1979, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.