In this study the effects of multi-loop control of liquid cooling garments (LCGs) under exercise heat stress conditions were investigated by experiments and theoretical analysis. A triple-loop LCG, by which the torso, arms and legs could be independently cooled, was used in the two series of experiments carried out in a hot environment (35 degrees C/40% RH). The experiment consisted of rest, exercise on an ergometer at 70 W and exercise at 110 W. In the first experiment, each water inlet temperature (TWI) was adjusted according to the local thermal sensation. In the second experiment, TWI for the torso including arms and TWI for the legs were regulated by a skin temperature controller with set-point adjustment via heart rate. The experiments showed that a multi-loop LCG is more effective than a single-loop LCG in providing thermal sensation and comfort adjusted to the requirements of the different parts of the body, and that a skin temperature controller could be applied to a multi-loop system. The theoretical analysis was carried out using a mathematical model of thermoregulation. The results showed that a strong cooling of the surface over the working muscles (legs) provided the greatest thermoregulatory advantage during low body exercise, because most of the heat generated within the working muscles can be removed directly by heat conduction to the skin. Optimization of a human/LCG system could be attained by an optimal configuration and control. However, an optimal configuration always depends on the application purpose of an LCG system.
[1]
E Shvartz,et al.
Efficiency and effectiveness of different water cooled suits--a review.
,
1972,
Aerospace medicine.
[2]
M H Harrison,et al.
Operational characteristics of liquid-conditioned suits.
,
1978,
Aviation, space, and environmental medicine.
[3]
J. Werner,et al.
Control of liquid cooling garments: technical control of mean skin temperature and its adjustments to exercise.
,
1997,
Applied human science : journal of physiological anthropology.
[4]
L H Kuznetz,et al.
Automatic control of human thermal comfort by a liquid-cooled garment.
,
1980,
Journal of biomechanical engineering.
[5]
M Hexamer,et al.
Control of liquid cooling garments: technical control of body heat storage.
,
1996,
Applied human science : journal of physiological anthropology.
[6]
J C Chato,et al.
Thermal protective garment using independent regional control of coolant temperature.
,
1973,
Aerospace medicine.
[7]
K B Pandolf,et al.
Cooling different body surfaces during upper and lower body exercise.
,
1987,
Journal of applied physiology.
[8]
Paul Webb,et al.
A Six-cylinder Model of for General Use on Human Thermoregulation Personal Computers
,
1993
.
[9]
E Shvartz,et al.
Objective approach to a design of a whole-body, water-cooled suit.
,
1974,
Aerospace medicine.