Connection between the existence of first integrals and the painlevé property in two-dimensional lotka-volterra and quadratic systems
暂无分享,去创建一个
M. Feix | L. Cairó | K. Govinder | P. Leach | D. Hua
[1] S. Maharaj,et al. Integrability analysis of a conformal equation in relativity , 1995 .
[2] M. Feix,et al. Invariants for a cubic three-wave system , 1994 .
[3] M. Feix,et al. A general time-dependent invariant for and integrability of the quadratic system , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[4] S. Cotsakis,et al. Painleve analysis of the mixmaster universe , 1994 .
[5] Jaume Llibre,et al. Quadratic Hamiltonian Vector Fields , 1994 .
[6] M. Feix,et al. Time-independent invariants of motion for the quadratic system , 1993 .
[7] M. Feix,et al. Hamiltonian method and invariant search for 2D quadratic systems , 1993 .
[8] P. Sachdev,et al. Integrability and singularity structure of predator‐prey system , 1993 .
[9] M. Feix,et al. On the Hamiltonian structure of 2D ODE possessing an invariant , 1992 .
[10] M. Feix,et al. Families of invariants of the motion for the Lotka–Volterra equations: The linear polynomials family , 1992 .
[11] Alfred Ramani,et al. The Painlevé property and singularity analysis of integrable and non-integrable systems , 1989 .
[12] B. Dorizzi,et al. Integrability and the Painlevé property for low-dimensional systems , 1984 .
[13] Marek Kus,et al. Integrals of motion for the Lorenz system , 1983 .
[14] M. Ablowitz,et al. A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .
[15] M. Ablowitz,et al. Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .
[16] J. Roth,et al. PERIODIC SMALL-AMPLITUDE SOLUTIONS TO VOLTERRA'S PROBLEM OF TWO CONFLICTING POPULATIONS AND THEIR APPLICATION TO THE PLASMA CONTINUITY EQUATIONS. , 1969 .
[17] P. Hartman. Ordinary Differential Equations , 1965 .
[18] Max Frommer,et al. Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmtheitsstellen , 1934 .
[19] T. Carleman. Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires , 1932 .
[20] E. L. Ince. Ordinary differential equations , 1927 .