Connection between the existence of first integrals and the painlevé property in two-dimensional lotka-volterra and quadratic systems

Taking advantage of the considerable amount of work done in the search for first integrals (invariants) for the two-dimensional Lotka-Volterra system and the quadratic system (lvs and qs), we compare the relations needed to exhibit invariants (one for the lvs, at least three for the qs) to the two conditions of the Painlevé test (index and compatibility). We find that, eventually restricting the invariants to those which are analytic (all exponents integers) and thereby adding new constraints, these constraints always coalesce with the two Painlevé conditions. We conclude that straightforward application of the Painlevé test picks up only these simple analytic invariants and that possession of the Painlevé property is too strong a condition for the existence of the invariants.

[1]  S. Maharaj,et al.  Integrability analysis of a conformal equation in relativity , 1995 .

[2]  M. Feix,et al.  Invariants for a cubic three-wave system , 1994 .

[3]  M. Feix,et al.  A general time-dependent invariant for and integrability of the quadratic system , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[4]  S. Cotsakis,et al.  Painleve analysis of the mixmaster universe , 1994 .

[5]  Jaume Llibre,et al.  Quadratic Hamiltonian Vector Fields , 1994 .

[6]  M. Feix,et al.  Time-independent invariants of motion for the quadratic system , 1993 .

[7]  M. Feix,et al.  Hamiltonian method and invariant search for 2D quadratic systems , 1993 .

[8]  P. Sachdev,et al.  Integrability and singularity structure of predator‐prey system , 1993 .

[9]  M. Feix,et al.  On the Hamiltonian structure of 2D ODE possessing an invariant , 1992 .

[10]  M. Feix,et al.  Families of invariants of the motion for the Lotka–Volterra equations: The linear polynomials family , 1992 .

[11]  Alfred Ramani,et al.  The Painlevé property and singularity analysis of integrable and non-integrable systems , 1989 .

[12]  B. Dorizzi,et al.  Integrability and the Painlevé property for low-dimensional systems , 1984 .

[13]  Marek Kus,et al.  Integrals of motion for the Lorenz system , 1983 .

[14]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[15]  M. Ablowitz,et al.  Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .

[16]  J. Roth,et al.  PERIODIC SMALL-AMPLITUDE SOLUTIONS TO VOLTERRA'S PROBLEM OF TWO CONFLICTING POPULATIONS AND THEIR APPLICATION TO THE PLASMA CONTINUITY EQUATIONS. , 1969 .

[17]  P. Hartman Ordinary Differential Equations , 1965 .

[18]  Max Frommer,et al.  Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmtheitsstellen , 1934 .

[19]  T. Carleman Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires , 1932 .

[20]  E. L. Ince Ordinary differential equations , 1927 .