Pharmacological modulation in mesial temporal lobe epilepsy: Current status and future perspectives.

[1]  Asla Pitkänen,et al.  Advances in the development of biomarkers for epilepsy , 2016, The Lancet Neurology.

[2]  F. Rosenow,et al.  Involvement of microRNAs in epileptogenesis , 2016, Epilepsia.

[3]  E. Aronica,et al.  Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA‐derived cell cultures , 2016, Glia.

[4]  A. Vincent,et al.  Progress in autoimmune epileptic encephalitis. , 2016, Current opinion in neurology.

[5]  G. Huberfeld,et al.  Seizures and gliomas — towards a single therapeutic approach , 2016, Nature Reviews Neurology.

[6]  A. Vezzani,et al.  Modulation of neuronal excitability by immune mediators in epilepsy. , 2016, Current opinion in pharmacology.

[7]  E. Aronica,et al.  Immunity and Inflammation in Epilepsy. , 2016, Cold Spring Harbor perspectives in medicine.

[8]  E. Aronica,et al.  Comorbidities in Neurology: Is adenosine the common link? , 2015, Neuropharmacology.

[9]  C. Limatola,et al.  GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis , 2015, Neurobiology of Disease.

[10]  A. Vezzani Anti-inflammatory drugs in epilepsy: does it impact epileptogenesis? , 2015, Expert opinion on drug safety.

[11]  A. Brooks-Kayal,et al.  Effect of spontaneous seizures on GABAA receptor α4 subunit expression in an animal model of temporal lobe epilepsy , 2014, Epilepsia.

[12]  M. Ferracin,et al.  Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology , 2014, PloS one.

[13]  G. Cheng,et al.  MicroRNAs: New Regulators of Toll-Like Receptor Signalling Pathways , 2014, BioMed research international.

[14]  I. Scheffer Epilepsy Genetics Revolutionizes Clinical Practice , 2014, Neuropediatrics.

[15]  E. Aronica,et al.  Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy , 2014, Neurobiology of Disease.

[16]  C. Limatola,et al.  Fractalkine/CX3CL1 modulates GABAA currents in human temporal lobe epilepsy , 2013, Epilepsia.

[17]  A. Ramasamy,et al.  Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A , 2013, Brain : a journal of neurology.

[18]  E. Palma,et al.  Changes in the sensitivity of GABAA current rundown to drug treatments in a model of temporal lobe epilepsy , 2013, Front. Cell. Neurosci..

[19]  Maria Thom,et al.  International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods , 2013, Epilepsia.

[20]  R. D’Ambrosio,et al.  Novel frontiers in epilepsy treatments: preventing epileptogenesis by targeting inflammation , 2013, Expert review of neurotherapeutics.

[21]  F. Yin,et al.  Expressions of Tumor Necrosis Factor Alpha and MicroRNA-155 in Immature Rat Model of Status Epilepticus and Children with Mesial Temporal Lobe Epilepsy , 2013, Journal of Molecular Neuroscience.

[22]  R. Miles,et al.  Cortical inhibition, pH and cell excitability in epilepsy: what are optimal targets for antiepileptic interventions? , 2013, The Journal of physiology.

[23]  F. Yin,et al.  Expression Patterns of miR-124, miR-134, miR-132, and miR-21 in an Immature Rat Model and Children with Mesial Temporal Lobe Epilepsy , 2013, Journal of Molecular Neuroscience.

[24]  P. V. van Rijen,et al.  MicroRNA-146a: A Key Regulator of Astrocyte-Mediated Inflammatory Response , 2012, PloS one.

[25]  Eleonora Aronica,et al.  Astrocyte immune responses in epilepsy , 2012, Glia.

[26]  Jinfeng Xue,et al.  Interleukin‐1β and microRNA‐146a in an immature rat model and children with mesial temporal lobe epilepsy , 2012, Epilepsia.

[27]  Donncha F. O’Brien,et al.  Reduced Mature MicroRNA Levels in Association with Dicer Loss in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis , 2012, PloS one.

[28]  A. A. Kan,et al.  Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response , 2012, Cellular and Molecular Life Sciences.

[29]  A. Sakamoto,et al.  Amygdala gene expression of NMDA and GABAA receptors in patients with mesial temporal lobe epilepsy , 2012, Hippocampus.

[30]  Fabien Pernot,et al.  Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy , 2011, Epilepsia.

[31]  E. Aronica,et al.  Ontogenetic modifications of neuronal excitability during brain maturation: Developmental changes of neurotransmitter receptors , 2011, Epilepsia.

[32]  J. C. Baayen,et al.  Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy , 2011, Epilepsia.

[33]  Yan Cheng,et al.  Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b , 2011, Brain Research.

[34]  P. Striano,et al.  Temporal lobe epilepsy and anti glutamic acid decarboxylase autoimmunity , 2011, Neurological Sciences.

[35]  F. Cendes,et al.  Benign mesial temporal lobe epilepsy , 2011, Nature Reviews Neurology.

[36]  E. Castrén,et al.  Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy , 2011, Neurobiology of Disease.

[37]  A. Pitkänen,et al.  Mechanisms of epileptogenesis and potential treatment targets , 2011, The Lancet Neurology.

[38]  E. Aronica,et al.  Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures , 2010, Nature Medicine.

[39]  J. C. Baayen,et al.  Expression pattern of miR‐146a, an inflammation‐associated microRNA, in experimental and human temporal lobe epilepsy , 2010, The European journal of neuroscience.

[40]  R. Miledi,et al.  Enhancement of GABAA-current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy , 2010, Proceedings of the National Academy of Sciences.

[41]  M. Manfredi,et al.  Blockage of A2A and A3 adenosine receptors decreases the desensitization of human GABAA receptors microtransplanted to Xenopus oocytes , 2009, Proceedings of the National Academy of Sciences.

[42]  E. Magri,et al.  Localized delivery of fibroblast growth factor–2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model , 2009, Proceedings of the National Academy of Sciences.

[43]  R. Miledi,et al.  Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors , 2008, Proceedings of the National Academy of Sciences.

[44]  Eleonora Aronica,et al.  Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy , 2008, Neurobiology of Disease.

[45]  R. Miledi,et al.  The Antiepileptic Drug Levetiracetam Stabilizes the Human Epileptic GABAA Receptors upon Repetitive Activation , 2007, Epilepsia.

[46]  S. Franceschetti,et al.  Electroclinical Features of a Family with Simple Febrile Seizures and Temporal Lobe Epilepsy Associated with SCN1A Loss‐of‐Function Mutation , 2007, Epilepsia.

[47]  M. Kokaia,et al.  Angels and demons: neurotrophic factors and epilepsy. , 2006, Trends in pharmacological sciences.

[48]  A. Quattrone,et al.  MRI evidence of mesial temporal sclerosis in sporadic “benign” temporal lobe epilepsy , 2006, Neurology.

[49]  F Giangaspero,et al.  Rundown of GABA type A receptors is a dysfunction associated with human drug-resistant mesial temporal lobe epilepsy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  R. Miledi,et al.  BDNF modulates GABAA receptors microtransplanted from the human epileptic brain to Xenopus oocytes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. McNamara,et al.  Conditional Deletion of TrkB but Not BDNF Prevents Epileptogenesis in the Kindling Model , 2004, Neuron.

[52]  R. Miledi,et al.  Phosphatase inhibitors remove the run-down of gamma-aminobutyric acid type A receptors in the human epileptic brain. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  K. Nocka,et al.  The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[55]  Alexander Hammers,et al.  Progressive neocortical damage in epilepsy , 2003, Annals of neurology.

[56]  J. Engel Mesial Temporal Lobe Epilepsy: What Have We Learned? , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[57]  H. Scharfman,et al.  BDNF and epilepsy: too much of a good thing? , 2001, Trends in Neurosciences.

[58]  A. Quattrone,et al.  Familial temporal lobe epilepsy Autosomal dominant inheritance in a large pedigree from Southern Italy , 2000, Epilepsy Research.

[59]  R. McLachlan,et al.  Febrile convulsions. Is seizure duration the most important predictor of temporal lobe epilepsy? , 1995, Brain : a journal of neurology.

[60]  D. Spencer,et al.  Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination , 1993, Annals of neurology.

[61]  P. Gloor,et al.  Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy , 1993, Neurology.

[62]  Josemir W Sander,et al.  National General Practice Study of Epilepsy (NGPSE) , 1992, Neurology.

[63]  M A Falconer,et al.  Mesial temporal (Ammon's horn) sclerosis as a common cause of epilepsy. Aetiology, treatment, and prevention. , 1974, Lancet.

[64]  P. Striano,et al.  Familial mesial temporal lobe epilepsy (FMTLE) : a clinical and genetic study of 15 Italian families. , 2008, Journal of neurology.

[65]  P. Striano,et al.  Familial mesial temporal lobe epilepsy (FMTLE) , 2007, Journal of Neurology.

[66]  G. Mathern,et al.  Hippocampal neuron damage in human epilepsy: Meyer's hypothesis revisited. , 2002, Progress in brain research.