Explicit Low-Bandwidth Evaluation Schemes for Weighted Sums of Reed-Solomon-Coded Symbols

Motivated by applications in distributed storage, distributed computing, and homomorphic secret sharing, we study communication-efficient schemes for computing linear combinations of coded symbols. Specifically, we design low-bandwidth schemes that evaluate the weighted sum of ℓ coded symbols in a codeword ${\mathbf{c}} \in {\mathbb{F}^n}$, when we are given access to d of the remaining components in c. Formally, suppose that $\mathbb{F}$ is a field extension of $\mathbb{B}$ of degree t. Let c be a codeword in a Reed-Solomon code of dimension k and our task is to compute the weighted sum of ℓ coded symbols. In this paper, for some s < t, we provide an explicit scheme that performs this task by downloading d(t − s) sub-symbols in $\mathbb{B}$ from d available nodes, whenever $d \geq \ell |\mathbb{B}{|^s} - \ell + k$. In many cases, our scheme outperforms previous schemes in the literature. Furthermore, we provide a characterization of evaluation schemes for general linear codes. Then in the special case of Reed-Solomon codes, we use this characterization to derive a lower bound for the evaluation bandwidth.

[1]  Son Hoang Dau,et al.  Practical Considerations in Repairing Reed-Solomon Codes , 2022, 2022 IEEE International Symposium on Information Theory (ISIT).

[2]  Changlu Lin,et al.  Communication Efficient Secret Sharing With Small Share Size , 2022, IEEE Transactions on Information Theory.

[3]  Y. Ishai,et al.  On the Download Rate of Homomorphic Secret Sharing , 2021, IACR Cryptol. ePrint Arch..

[4]  Roberto Assis Machado,et al.  Field Trace Polynomial Codes for Secure Distributed Matrix Multiplication , 2021, 2021 XVII International Symposium "Problems of Redundancy in Information and Control Systems" (REDUNDANCY).

[5]  Mary Wootters,et al.  Low-bandwidth recovery of linear functions of Reed-Solomon-encoded data , 2021, ITCS.

[6]  Cambridge University Press Cambridge University Press , 2021 .

[7]  Itzhak Tamo,et al.  Nonlinear Repair of Reed-Solomon Codes , 2021, IEEE Transactions on Information Theory.

[8]  Andreas Lenz,et al.  Function-Correcting Codes , 2021, 2021 IEEE International Symposium on Information Theory (ISIT).

[9]  Sarit Buzaglo,et al.  Repairing Reed–Solomon Codes Evaluated on Subspaces , 2020, IEEE Transactions on Information Theory.

[10]  Noboru Kunihiro,et al.  Strong security of linear ramp secret sharing schemes with general access structures , 2020, Inf. Process. Lett..

[11]  Han Mao Kiah,et al.  Repairing Reed-Solomon Codes via Subspace Polynomials , 2020, IEEE Transactions on Information Theory.

[12]  2020 IEEE International Symposium on Information Theory (ISIT) , 2020 .

[13]  Itzhak Tamo,et al.  The Repair Problem for Reed–Solomon Codes: Optimal Repair of Single and Multiple Erasures With Almost Optimal Node Size , 2019, IEEE Transactions on Information Theory.

[14]  Balaji Srinivasan Babu,et al.  Erasure coding for distributed storage: an overview , 2018, Science China Information Sciences.

[15]  Hamid Jafarkhani,et al.  On the Sub-Packetization Size and the Repair Bandwidth of Reed-Solomon Codes , 2018, IEEE Transactions on Information Theory.

[16]  Yuval Ishai,et al.  Homomorphic Secret Sharing: Optimizations and Applications , 2017, CCS.

[17]  Alexander Vardy,et al.  Improved schemes for asymptotically optimal repair of MDS codes , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[18]  Mary Wootters,et al.  Repairing multiple failures for scalar MDS codes , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[19]  Wentao Huang,et al.  Secret sharing with optimal decoding and repair bandwidth , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[20]  Hoang Dau,et al.  Low bandwidth repair of the RS(10,4) Reed-Solomon code , 2017, 2017 Information Theory and Applications Workshop (ITA).

[21]  Hoang Dau,et al.  Optimal repair schemes for some families of full-length reed-solomon codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[22]  Han Mao Kiah,et al.  Repairing Reed-Solomon Codes With Multiple Erasures , 2016, IEEE Transactions on Information Theory.

[23]  Yuval Ishai,et al.  Breaking the Circuit Size Barrier for Secure Computation Under DDH , 2016, CRYPTO.

[24]  Venkatesan Guruswami,et al.  Repairing Reed-Solomon Codes , 2015, IEEE Transactions on Information Theory.

[25]  Wentao Huang,et al.  Communication Efficient Secret Sharing , 2015, IEEE Transactions on Information Theory.

[26]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[27]  Mitsugu Iwamoto,et al.  Strongly secure ramp secret sharing schemes for general access structures , 2005, Inf. Process. Lett..

[28]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[29]  Catherine A. Meadows,et al.  Security of Ramp Schemes , 1985, CRYPTO.

[30]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[31]  I. Reed,et al.  Polynomial Codes Over Certain Finite Fields , 1960 .

[32]  G. R. Blakley,et al.  Safeguarding cryptographic keys , 1899, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[33]  Lawrence Roy,et al.  Large Message Homomorphic Secret Sharing from DCR and Applications , 2021, IACR Cryptol. ePrint Arch..

[34]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[35]  Yuval Ishai,et al.  Foundations of Homomorphic Secret Sharing , 2018, ITCS.

[36]  Frédérique Oggier,et al.  An Overview of Coding for Distributed Storage Systems , 2018 .

[37]  Jonathan Katz,et al.  Advances in Cryptology – CRYPTO 2016 , 2016, Lecture Notes in Computer Science.

[38]  Ryutaroh Matsumoto,et al.  Optimal multiple assignment scheme for strongly secure ramp secret sharing schemes with general access structures , 2015 .

[39]  Ieee Staff,et al.  2014 IEEE International Symposium on Information Theory (ISIT) , 2014 .

[40]  K. Conrad,et al.  FINITE FIELDS , 2018 .

[41]  Duncan S. Wong,et al.  On Secret Reconstruction in Secret Sharing Schemes , 2008, IEEE Transactions on Information Theory.

[42]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[43]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[44]  Hirosuke Yamamoto,et al.  Secret sharing system using (k, L, n) threshold scheme , 1986 .

[45]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .