Limit cycles in control systems employing smart actuators with hysteresis

This paper presents theoretical and experimental results concerning a feedback control system employing a Terfenol-D-based smart actuator. Such magnetostrictive devices exhibit significant hysteresis, which, under some conditions, can generate self-sustained periodic oscillations in the control loop. The paper proposes a general procedure to find these conditions and to compute this periodic solution by exploiting some classical results about describing function analysis and the well-known Preisach operator theory. The theoretical findings are supported by a rigorous mathematical analysis resorting to fixed-point theorems.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[3]  A. Bergen,et al.  Describing functions revisited , 1975 .

[4]  A. I. Mees,et al.  Dynamics of feedback systems , 1981 .

[5]  Leon O. Chua,et al.  Error Bounds for General Describing Function Problems , 1982 .

[6]  I︠a︡. Z. T︠S︡ypkin Relay Control Systems , 1985 .

[7]  M. Brokate,et al.  Some mathematical properties of the Preisach model for hysteresis , 1989 .

[8]  L. Wang,et al.  Fuzzy systems are universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[9]  Paolo Nistri,et al.  Mathematical Models for Hysteresis , 1993, SIAM Rev..

[10]  A. Visintin Differential models of hysteresis , 1994 .

[11]  G. Leonov,et al.  Frequency Methods in Oscillation Theory , 1995 .

[12]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[13]  G. Bertotti,et al.  hysteresis in magnetism (electromagnetism) , 1998 .

[14]  Martin Brokate,et al.  Asymptotically Stable Oscillations in Systems with Hysteresis Nonlinearities , 1998 .

[15]  C. Joshi HIGH FORCE , PRECISION POSITIONING USING MAGNETIC SMART MATERIALS , 1999 .

[16]  Tryphon T. Georgiou,et al.  Dynamics of relay relaxation oscillators , 2001, IEEE Trans. Autom. Control..

[17]  Recurrent oscillations in systems with hysteresis nonlinearities , 2001 .

[18]  Ciro Visone,et al.  Identification and compensation of Preisach hysteresis models for magnetostrictive actuators , 2001 .

[19]  Ciro Natale,et al.  Modal Analysis and Vibration Control of a Fuselage Aeronautical Panel , 2002 .

[20]  I. Mayergoyz Mathematical models of hysteresis and their applications , 2003 .

[21]  On a Nonlocal Condition for Existence of Cycles of Hysteresis Systems , 2003 .

[22]  C. Natale,et al.  Effects of hysteresis compensation in feedback control systems , 2003 .

[23]  C. Maya,et al.  Magnetostrictive Dynamic Vibration Absorber ( DVA ) for Passive and Active Damping , 2003 .

[24]  C. Natale,et al.  Feedback control systems for micropositioning tasks with hysteresis compensation , 2004, IEEE Transactions on Magnetics.

[25]  P. Pagliarulo,et al.  TUNABLE MAGNETOSTRICTIVE DYNAMIC VIBRATION ABSORBER , 2004 .