Applied Bohmian mechanics

Abstract Bohmian mechanics provides an explanation of quantum phenomena in terms of point-like particles guided by wave functions. This review focuses on the use of nonrelativistic Bohmian mechanics to address practical problems, rather than on its interpretation. Although the Bohmian and standard quantum theories have different formalisms, both give exactly the same predictions for all phenomena. Fifteen years ago, the quantum chemistry community began to study the practical usefulness of Bohmian mechanics. Since then, the scientific community has mainly applied it to study the (unitary) evolution of single-particle wave functions, either by developing efficient quantum trajectory algorithms or by providing a trajectory-based explanation of complicated quantum phenomena. Here we present a large list of examples showing how the Bohmian formalism provides a useful solution in different forefront research fields for this kind of problems (where the Bohmian and the quantum hydrodynamic formalisms coincide). In addition, this work also emphasizes that the Bohmian formalism can be a useful tool in other types of (nonunitary and nonlinear) quantum problems where the influence of the environment or the nonsimulated degrees of freedom are relevant. This review contains also examples on the use of the Bohmian formalism for the many-body problem, decoherence and measurement processes. The ability of the Bohmian formalism to analyze this last type of problems for (open) quantum systems remains mainly unexplored by the scientific community. The authors of this review are convinced that the final status of the Bohmian theory among the scientific community will be greatly influenced by its potential success in those types of problems that present nonunitary and/or nonlinear quantum evolutions. A brief introduction of the Bohmian formalism and some of its extensions are presented in the last part of this review.

[1]  J. Tisch,et al.  Single attosecond light pulses from multi-cycle laser sources , 2011 .

[2]  G. Iannaccone,et al.  ENHANCED SHOT NOISE IN RESONANT TUNNELING : THEORY AND EXPERIMENT , 1998 .

[3]  C. Efthymiopoulos,et al.  Order in de Broglie–Bohm quantum mechanics , 2012, 1203.5598.

[4]  Environmental effects in the third moment of voltage fluctuations in a tunnel junction. , 2003, Physical review letters.

[5]  E. Floyd Arbitrary initial conditions of nonlocal hidden variables , 1984 .

[6]  Antony Valentini,et al.  Time scales for dynamical relaxation to the Born rule , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  G. D. Polavieja A causal quantum theory in phase space , 1996 .

[8]  J. Suñé,et al.  Bohm trajectories for the Monte Carlo simulation of quantum-based devices , 1998 .

[9]  O. Bonfim,et al.  Chaotic Bohm's trajectories in a quantum circular billiard , 2000 .

[10]  Martin Daumer,et al.  Naive Realism about Operators , 1996 .

[11]  I. Tavernelli,et al.  Trajectory-based solution of the nonadiabatic quantum dynamics equations: an on-the-fly approach for molecular dynamics simulations. , 2011, Physical chemistry chemical physics : PCCP.

[12]  S. Miret-Artés,et al.  Comment on "Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics" [J. Chem. Phys. 125, 231103 (2006)]. , 2007, The Journal of chemical physics.

[13]  M. John Probability and complex quantum trajectories: Finding the missing links , 2010, 1007.3838.

[14]  Temperature crossover of decoherence rates in chaotic and regular bath dynamics. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  C. Efthymiopoulos,et al.  Origin of chaos near critical points of quantum flow. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  I. Christov Time-dependent quantum Monte Carlo and the stochastic quantization. , 2007, The Journal of chemical physics.

[17]  Complex tunneling dynamics , 2007 .

[18]  Lipo Wang,et al.  Quantum mechanics without wave functions , 1988 .

[19]  Cai Qing-yu,et al.  Bohmian mechanics to high-order harmonic generation , 2010 .

[20]  Max Born,et al.  Zur Quantenmechanik. II , 2022 .

[21]  X. Oriols,et al.  Self-consistent simulation of quantum shot noise in nanoscale electron devices , 2004 .

[22]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[23]  X. Oriols,et al.  Self-consistent time-dependent boundary conditions for static and dynamic simulations of small electron devices , 2013 .

[24]  R. A. Leacock,et al.  Hamilton-Jacobi Theory and the Quantum Action Variable , 1983 .

[25]  Salvatore Stagira,et al.  Generalized molecular orbital tomography , 2011 .

[26]  Louis de Broglie,et al.  La mécanique ondulatoire et la structure atomique de la matière et du rayonnement , 1927 .

[27]  Analysis of electron transport in a two-dimensional structure using quantal trajectories , 1998 .

[28]  Adolfo del Campo,et al.  Time in Quantum Mechanics - Vol. 2 , 2009 .

[29]  Thomas,et al.  Admittance of small conductors. , 1993, Physical review letters.

[30]  REFLECTION TIME AND THE GOOS-HÄNCHEN EFFECT FOR REFLECTION BY A SEMI-INFINITE RECTANGULAR BARRIER , 1997, quant-ph/9708007.

[31]  Kenichi L. Ishikawa,et al.  Analysis of strong-field enhanced ionization of molecules using Bohmian trajectories , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[32]  T. Norsen The Theory of (Exclusively) Local Beables , 2009, 0909.4553.

[33]  R. Rubin,et al.  Quantum‐Mechanical Calculation of the Probability of an Exchange Reaction for Constrained Linear Encounters , 1959 .

[34]  Lorenz S. Cederbaum,et al.  Hydrodynamic equations for mixed quantum states. II. Coupled electronic states , 2001 .

[35]  J. G. Muga,et al.  Arrival time in quantum mechanics , 2000 .

[36]  Basil J. Hiley,et al.  Quantum interference and the quantum potential , 1979 .

[37]  D. R. Hartree,et al.  The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[38]  C. Yang,et al.  Parameterization of all path integral trajectories , 2007 .

[39]  P. Jordan Über eine neue Begründung der Quantenmechanik. II. , 1927 .

[40]  L. Marchildon Two-particle interference devices and compatibility of bohmian and standard quantum mechanics , 2003 .

[41]  Chaotic dynamics in billiards using Bohm's quantum mechanics , 1998 .

[42]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[43]  R. Alicki,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[44]  Quantization of Friedmann cosmological models with two fluids: Dust plus radiation , 2005, gr-qc/0505109.

[45]  Rudolph A. Marcus,et al.  On the Analytical Mechanics of Chemical Reactions. Classical Mechanics of Linear Collisions , 1966 .

[46]  Modified De Broglie-Bohm Approach to Quantum Mechanics , 2001, quant-ph/0109093.

[48]  F. Borondo,et al.  Quantum trajectories in atom-surface scattering with single adsorbates: the role of quantum vortices. , 2004, The Journal of chemical physics.

[49]  Bernard Pons,et al.  Self-consistent Bohmian description of strong field-driven electron dynamics , 2010 .

[50]  D. Tannor,et al.  Communication: overcoming the root search problem in complex quantum trajectory calculations. , 2014, The Journal of chemical physics.

[51]  Jordi Mompart,et al.  Atomtronics with holes: Coherent transport of an empty site in a triple-well potential , 2009, 0912.4362.

[52]  D. Albert Elementary Quantum Metaphysics , 1996 .

[53]  CONFORMAL TRANSFORMATIONS AND QUANTUM GRAVITY , 1998, gr-qc/9903049.

[54]  Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics. , 2006 .

[55]  C. Umrigar,et al.  Quantum Monte Carlo methods in physics and chemistry , 1999 .

[56]  J. Mompart,et al.  Three-level atom optics via the tunneling interaction , 2004 .

[57]  Oscillatory bohm trajectories in resonant tunneling structures , 1996 .

[58]  A. Valentini Pilot-Wave Theory of Fields, Gravitation and Cosmology , 1996 .

[59]  Christoph Meier,et al.  Quantum-classical description of rotational diffractive scattering using Bohmian trajectories: Comparison with full quantum wave packet results , 2002 .

[60]  Jordi Mompart,et al.  Transferring orbital and spin angular momenta of light to atoms , 2010, 1005.1610.

[61]  G. Contopoulos,et al.  Wavepacket approach to particle diffraction by thin targets: Quantum trajectories and arrival times , 2011, 1111.7116.

[62]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[63]  Quantum trajectories in complex space: one-dimensional stationary scattering problems. , 2008, The Journal of chemical physics.

[64]  Malte Schlosser,et al.  Scalable architecture for quantum information processing with atoms in optical micro-structures , 2011, Quantum Inf. Process..

[65]  C. R. Leavens Transmission, reflection and dwell times within Bohm's causal interpretation of quantum mechanics , 1990 .

[66]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[67]  C Brooksby,et al.  Quantum backreaction through the Bohmian particle. , 2001, Physical review letters.

[68]  Allan N. Kaufman,et al.  Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories , 1979 .

[69]  Francesco Petruccione,et al.  Concepts and Methods in the Theory of Open Quantum Systems , 2003, quant-ph/0302047.

[70]  Gloria Platero,et al.  Steady-state coherent transfer by adiabatic passage. , 2012, Physical review letters.

[71]  Andreas Becker,et al.  Visualization and interpretation of attosecond electron dynamics in laser-driven hydrogen molecular ion using Bohmian trajectories. , 2010, The Journal of chemical physics.

[72]  A. Lüchow Quantum Monte Carlo methods , 2011 .

[73]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[74]  Maciej Lewenstein,et al.  Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems , 2012 .

[75]  Zurek,et al.  Decoherence, chaos, and the second law. , 1994, Physical review letters.

[76]  Hans Frisk,et al.  PROPERTIES OF THE TRAJECTORIES IN BOHMIAN MECHANICS , 1997 .

[77]  X. Oriols,et al.  An electron injection model for time-dependent simulators of nanoscale devices with electron confinement: Application to the comparison of the intrinsic noise of 3D-, 2D- and 1D-ballistic transistors , 2007 .

[78]  Büttiker,et al.  Scattering theory of thermal and excess noise in open conductors. , 1990, Physical review letters.

[79]  Erkki J. Brändas,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory : E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch and I.-O Stamatescu, Springer-Verlag, New York, 2003 , 2004 .

[80]  D. Durr,et al.  The role of the probability current for time measurements , 2013, 1309.4957.

[81]  Aephraim M. Steinberg,et al.  Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer , 2011, Science.

[82]  Robert L. Weber,et al.  Sources of Quantum Mechanics , 1968 .

[83]  L. Cederbaum,et al.  Hydrodynamic equations for mixed quantum states. I. General formulation , 2001 .

[84]  Christoph Simon,et al.  Proposal to observe the nonlocality of Bohmian trajectories with entangled photons. , 2012, Physical review letters.

[85]  B. R. Bennett,et al.  Open quantum dots—probing the quantum to classical transition , 2011 .

[86]  K. Bray,et al.  Putting a stop to surface ignition , 1990 .

[87]  Y. Blanter,et al.  Transition from sub-Poissonian to super-Poissonian shot noise in resonant quantum wells , 1999 .

[88]  M. Pettini,et al.  Regular and chaotic quantum motions , 1996 .

[89]  R. Wyatt,et al.  Quantum Wave Packet Dynamics with Trajectories , 1999 .

[90]  J. Hirschfelder,et al.  Quantized vortices around wavefunction nodes. II , 1974 .

[91]  S. Garashchuk,et al.  Calculation of the zero-point energy from imaginary-time quantum trajectory dynamics in Cartesian coordinates , 2012, Theoretical Chemistry Accounts.

[92]  K. Taylor,et al.  Single-ionization of helium at Ti:Sapphire wavelengths: rates and scaling laws , 2007 .

[93]  R. Wyatt,et al.  Considerations on the probability density in complex space , 2008 .

[94]  W. Struyve,et al.  COMMENT: Comment on 'Bohmian prediction about a two double-slit experiment and its disagreement with standard quantum mechanics' , 2003 .

[95]  D. Tannor,et al.  Interference in Bohmian mechanics with complex action. , 2007, The Journal of chemical physics.

[96]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[97]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[98]  F. Shojai,et al.  Quantum cosmology with varying speed of light and Bohmian trajectories , 2007, 0708.0620.

[99]  D. Sprung,et al.  Quantum chaos in terms of Bohm trajectories , 1999 .

[100]  Where and why the generalized Hamilton-Jacobi representation describes microstates of the Schrödinger wave function , 1996, quant-ph/9707051.

[101]  A. Bennett,et al.  Relative dispersion and quantum thermal equilibrium in de Broglie–Bohm mechanics , 2010 .

[102]  Vitaly A. Rassolov,et al.  Semiclassical Nonadiabatic Dynamics with Quantum Trajectories , 2005 .

[103]  Y. Blanter,et al.  Shot noise in mesoscopic conductors , 1999, cond-mat/9910158.

[104]  J. Tully Perspective: Nonadiabatic dynamics theory. , 2012, The Journal of chemical physics.

[105]  M. John Probability and complex quantum trajectories , 2008, 0809.5101.

[106]  P. Dirac On the Analogy Between Classical and Quantum Mechanics , 1945 .

[107]  R. Wyatt,et al.  Quantum Hydrodynamic Analysis of Decoherence , 2003 .

[108]  B. Shore,et al.  Coherent population transfer among quantum states of atoms and molecules , 1998 .

[109]  Enrique R. Pujals,et al.  Motion of vortices implies chaos in Bohmian mechanics , 2005 .

[110]  D. Dürr,et al.  Quantum equilibrium and the origin of absolute uncertainty , 1992, quant-ph/0308039.

[111]  C. Yang Quantum Hamilton mechanics: Hamilton equations of quantum motion, origin of quantum operators, and proof of quantization axiom , 2006 .

[112]  Guido Bacciagaluppi,et al.  Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference , 2009 .

[113]  I. Christov Polynomial-time-scaling quantum dynamics with time-dependent quantum Monte Carlo. , 2009, The journal of physical chemistry. A.

[114]  R. Parmenter,et al.  DETERMINISTIC CHAOS AND THE CAUSAL INTERPRETATION OF QUANTUM MECHANICS , 1995 .

[115]  S. Miret-Artés,et al.  On the unique mapping relationship between initial and final quantum states , 2011, 1112.3830.

[116]  J. Fröhlich,et al.  The message of quantum science : attempts towards a synthesis , 2015 .

[117]  V. Rassolov,et al.  Semiclassical Bohmian Dynamics , 2010 .

[118]  Jian Liu,et al.  Bohm's formulation in imaginary time: estimation of energy eigenvalues , 2005 .

[119]  A. Messiah Quantum Mechanics , 1961 .

[120]  J. Suñé,et al.  Many-particle Hamiltonian for open systems with full Coulomb interaction: Application to classical and quantum time-dependent simulations of nanoscale electron devices , 2009 .

[121]  P. Holland,et al.  The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics , 1993 .

[122]  M. Ventra Electrical Transport in Nanoscale Systems , 2008 .

[123]  Approach to study the noise properties in nanoscale electronic devices , 2001 .

[124]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[125]  Lorenz S. Cederbaum,et al.  Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method , 1999 .

[126]  R. Wyatt,et al.  Computational method for the quantum Hamilton-Jacobi equation: bound states in one dimension. , 2006, The Journal of chemical physics.

[127]  V. McKoy,et al.  Pump-probe photoionization study of the passage and bifurcation of a quantum wave packet across an avoided crossing. , 2003, Physical review letters.

[128]  David A. Micha,et al.  A self‐consistent eikonal treatment of electronic transitions in molecular collisions , 1983 .

[129]  R. Wyatt Quantum wave packet dynamics with trajectories: Application to reactive scattering , 1999 .

[130]  N. Zanghí,et al.  Time-resolved electron transport with quantum trajectories , 2013 .

[131]  E. Pujals,et al.  Vortex dynamics and their interactions in quantum trajectories , 2007 .

[132]  Multidimensional quantum dynamics with trajectories: a novel numerical implementation of Bohmian mechanics , 2000 .

[133]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[134]  J. Hirschfelder The angular momentum, creation, and significance of quantized vortices , 1977 .

[135]  Q. Cai,et al.  From a quantum to a classical description of intense laser–atom physics with Bohmian trajectories , 2009, 0912.3979.

[136]  B. B. Augstein,et al.  Bohmian-trajectory analysis of high-order-harmonic generation: Ensemble averages, nonlocality, and quantitative aspects , 2013, 1301.1916.

[137]  D. Kobe Quantum power in de Broglie–Bohm theory , 2007 .

[138]  X. Oriols,et al.  Quantum-trajectory approach to time-dependent transport in mesoscopic systems with electron-electron interactions. , 2007, Physical review letters.

[139]  E. Floyd Modified potential and Bohm's quantum-mechanical potential , 1982 .

[140]  Solving quantum trajectories in Coulomb potential by quantum Hamilton–Jacobi theory , 2006 .

[141]  High frequency components of current fluctuations in semiconductor tunneling barriers , 2002 .

[142]  A. Matzkin,et al.  Classical and Bohmian trajectories in semiclassical systems: Mismatch in dynamics, mismatch in reality? , 2007 .

[143]  I. Christov,et al.  Time-dependent quantum Monte Carlo: preparation of the ground state , 2006, physics/0611196.

[144]  H. Nikolić Time in relativistic and nonrelativistic quantum mechanics , 2008, 0811.1905.

[145]  R. Wyatt,et al.  Computational method for the quantum Hamilton-Jacobi equation: one-dimensional scattering problems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[146]  R. Wyatt,et al.  Quantum hydrodynamic analysis of decoherence: quantum trajectories and stress tensor , 2002 .

[147]  F. Traversa,et al.  EFFECT OF GATE-ALL-AROUND TRANSISTOR GEOMETRY ON THE HIGH-FREQUENCY NOISE: ANALYTICAL DISCUSSION , 2012 .

[148]  Eric J. Heller,et al.  Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .

[149]  Quantum mechanical effects on noise properties of nanoelectronic devices: application to Monte Carlo simulation , 2003 .

[150]  X. Cartoixà,et al.  Computation of many-particle quantum trajectories with exchange interaction: application to the simulation of nanoelectronic devices , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[151]  Bohmian prediction about a two double-slit experiment and its disagreement with standard quantum mechanics , 2001, quant-ph/0103101.

[152]  C. Meier,et al.  Mixing quantum and classical dynamics using Bohmian trajectories , 2000 .

[153]  J. Barker,et al.  On the use of Bohm trajectories for interpreting quantum flows in quantum dot structures , 2000 .

[154]  Q. Cai,et al.  Above-threshold ionization photoelectron spectrum from quantum trajectory , 2009, 0906.3344.

[155]  X. Oriols,et al.  Computation of quantum electron transport with local current conservation using quantum trajectories , 2009 .

[156]  A. Bolivar Quantum-Classical Correspondence , 2004 .

[157]  A. Becker,et al.  Multiple ionization bursts in laser-driven hydrogen molecular ion. , 2010, Physical review letters.

[158]  Samuel Colin,et al.  Quantum non-equilibrium and relaxation to equilibrium for a class of de Broglie–Bohm-type theories , 2009, 0911.2823.

[159]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[160]  David,et al.  Semiclassical approximation with zero velocity trajectories , 2007, 0705.2132.

[161]  W. Pauli,et al.  General Principles of Quantum Mechanics , 1980 .

[162]  Salvador Miret-Artés,et al.  A Trajectory Description of Quantum Processes. I. Fundamentals , 2012 .

[163]  Mártin,et al.  Implications of the noncrossing property of Bohm trajectories in one-dimensional tunneling configurations. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[164]  Exploring quantum non-locality with de Broglie-Bohm trajectories. , 2011, The Journal of chemical physics.

[165]  L. Reichl,et al.  The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations , 1992 .

[166]  Gregor Wentzel,et al.  Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik , 1926 .

[167]  C. Dewdney Nonlocally correlated trajectories in two-particle quantum mechanics , 1988 .

[168]  R. Levine,et al.  Multi-Electronic-State Molecular Dynamics: A Wave Function Approach with Applications , 1996 .

[169]  J. Tully,et al.  Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .

[170]  On the classical limit in atom-surface diffraction , 2001 .

[171]  V. S. Olkhovsky Time as a Quantum Observable, Canonically Conjugated to Energy, and Foundations of Self-Consistent Time Analysis of Quantum Processes , 2009 .

[172]  C. R. Leavens Arrival time distributions , 1993 .

[173]  Paul Adrien Maurice Dirac,et al.  The physical interpretation of the quantum dynamics , 1927 .

[174]  Stephen M. Barnett,et al.  Violation of Leggett inequalities in orbital angular momentum subspaces , 2010 .

[175]  Franco Nori,et al.  Nonperturbative theory of weak pre-and post-selected measurements , 2011, 1109.6315.

[176]  Albert C. Christoph,et al.  Quantum mechanical streamlines. I. Square potential barrier , 1974 .

[177]  D. Tannor,et al.  Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation. , 2012, The Journal of chemical physics.

[178]  C. F. D. M. Faria,et al.  Local dynamics in high-order-harmonic generation using Bohmian trajectories , 2012, 1205.5298.

[179]  R. Wyatt,et al.  Quantum Dynamics of the Collinear (H, H2) Reaction , 1969 .

[180]  The Bohm Interpretation of Quantum Cosmology , 2004, gr-qc/0410117.

[181]  Christos Efthymiopoulos,et al.  Nodal points and the transition from ordered to chaotic Bohmian trajectories , 2007, 0709.2038.

[182]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[183]  B. Pellegrini Elementary applications of quantum-electrokinematics theorem , 1993 .

[184]  Measurement of counting statistics of electron transport in a tunnel junction. , 2005, Physical review letters.

[185]  H. Appel,et al.  Correlated electron-nuclear dynamics with conditional wave functions. , 2014, Physical review letters.

[186]  L. Marchildon,et al.  Two-particle interference in standard and Bohmian quantum mechanics , 2003 .

[187]  L. Cederbaum,et al.  Quantum hydrodynamics: Mixed states, dissipation, and a new hybrid quantum‐classical approach , 2004 .

[188]  I. Horenko,et al.  Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phase-space packets , 2002 .

[189]  High-order-harmonic generation from diatomic molecules in driving fields with nonvanishing ellipticity: A generalized interference condition , 2013, 1305.4556.

[190]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[191]  T. Paterek,et al.  An experimental test of non-local realism , 2007, Nature.

[192]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[193]  J. Schiff,et al.  Unified derivation of Bohmian methods and the incorporation of interference effects. , 2007, The journal of physical chemistry. A.

[194]  From the UV to the static-field limit: rates and scaling laws of intense-field ionization of helium , 2009 .

[195]  H. A. Kramers,et al.  Wellenmechanik und halbzahlige Quantisierung , 1926 .

[196]  A. Fring,et al.  Bohmian quantum trajectories from coherent states , 2013, 1305.4619.

[197]  Franco Nori,et al.  Distinguishing quantum and classical transport through nanostructures. , 2010, Physical review letters.

[198]  A. Matzkin Bohmian Mechanics, the Quantum-Classical Correspondence and the Classical Limit: The Case of the Square Billiard , 2008, 0806.3240.

[199]  M. Berry Quantum chaology, not quantum chaos , 1989 .

[200]  C. Dewdney,et al.  Locality and nonlocality in correlated two-particle interferometry , 1990 .

[201]  James T. Cushing,et al.  Bohmian mechanics and quantum theory: an appraisal , 1996 .

[202]  C. Yang Quantum dynamics of hydrogen atom in complex space , 2005 .

[203]  Judah L. Schwartz,et al.  Computer-Generated Motion Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena , 1967 .

[204]  R. D. Prosser The interpretation of diffraction and interference in terms of energy flow , 1976 .

[205]  Don Howard,et al.  “Nicht Sein Kann was Nicht Sein Darf,” or the Prehistory of EPR, 1909–1935: Einstein’s Early Worries about the Quantum Mechanics of Composite Systems , 1990 .

[206]  Teodoro Collin RANDOM MATRIX THEORY , 2016 .

[207]  Peter R. Holland Is Quantum Mechanics Universal , 1996 .

[208]  M. Murnane,et al.  Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers , 2012, Science.

[209]  Pamela W. Jordan Über eine neue Begründung der Quantenmechanik , 1927 .

[210]  Quantum mechanics from an equivalence principle , 1997, hep-th/9705108.

[211]  T. Takabayasi Remarks on the Formulation of Quantum Mechanics with Classical Pictures and on Relations between Linear Scalar Fields and Hydrodynamical Fields , 1953 .

[212]  Thomas Durt,et al.  Bohm’s interpretation and maximally entangled states , 2002 .

[213]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[214]  I. Christov Molecular dynamics with time dependent quantum Monte Carlo. , 2008, The Journal of chemical physics.

[215]  Dieter Bauer,et al.  Above-threshold ionization by few-cycle pulses , 2006 .

[216]  Chaotic causal trajectories: the role of the phase of stationary states , 2000 .

[217]  Iñigo L. Egusquiza,et al.  Time in quantum mechanics , 2002 .

[218]  L. Shifren,et al.  Correspondence between quantum and classical motion: comparing Bohmian mechanics with a smoothed effective potential approach , 2000 .

[219]  Garg,et al.  Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? , 1985, Physical review letters.

[220]  F. Traversa,et al.  Many-particle Monte Carlo Approach to Electron Transport , 2011 .

[221]  S. Holloway,et al.  Dissociation dynamics from a de Broglie–Bohm perspective , 2001 .

[222]  M. Golshani,et al.  ON THE GEOMETRIZATION OF BOHMIAN MECHANICS: A NEW APPROACH TO QUANTUM GRAVITY , 1998 .

[223]  J. Lundeen,et al.  Procedure for direct measurement of general quantum states using weak measurement. , 2011, Physical review letters.

[224]  N. Rosen Quantum particles and classical particles , 1986 .

[225]  Role of quantum vortices in atomic scattering from single adsorbates , 2004 .

[226]  A. Faraggi,et al.  The Equivalence principle of quantum mechanics: Uniqueness theorem , 1997, hep-th/9711028.

[227]  On modeling and visualizing single-electron spin motion , 2006 .

[228]  S. Miret-Artés,et al.  Quantum trajectories in elastic atom-surface scattering: threshold and selective adsorption resonances. , 2005, The Journal of chemical physics.

[229]  Christos Efthymiopoulos,et al.  Ordered and chaotic Bohmian trajectories , 2008 .

[230]  Sheldon Goldstein,et al.  On the Weak Measurement of Velocity in Bohmian Mechanics , 2008 .

[231]  Stefan Teufel,et al.  Bohmian Mechanics: The Physics and Mathematics of Quantum Theory , 2009 .

[232]  A. Makowski Exact classical limit of quantum mechanics: Central potentials and specific states , 2002 .

[233]  N. Rosen Identical Motion in Quantum and Classical Mechanics , 1964 .

[234]  Andrew V. Martin,et al.  Spatial coherent transport of interacting dilute Bose gases , 2008 .

[235]  J. M. Bofill,et al.  Understanding chemical reactions within a generalized Hamilton–Jacobi framework , 2009, 0906.0074.

[236]  C. Meier,et al.  Femtosecond pump-probe spectroscopy of I2 in a dense rare gas environment: a mixed quantum/classical study of vibrational decoherence. , 2004, The Journal of chemical physics.

[237]  Quantum dissipation in unbounded systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[238]  B. Guo,et al.  First measurement of the 2H(6He,7Li)n angular distribution and proton spectroscopic factor in 7Li , 2010 .

[239]  R. Wyatt,et al.  Quantum vortices within the complex quantum Hamilton-Jacobi formalism. , 2008, The Journal of chemical physics.

[240]  Gerhard Klimeck,et al.  Quantitative simulation of a resonant tunneling diode , 1997, Journal of Applied Physics.

[241]  U. Schwengelbeck,et al.  Unified theory of Lyapunov exponents and a positive example of deterministic quantum chaos , 1995 .

[242]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[243]  Salvador Miret-Artés,et al.  A Trajectory Description of Quantum Processes. II. Applications. A Bohmian Perspective , 2013 .

[244]  J. Hirschfelder,et al.  Quantum mechanical streamlines. IV. Collision of two spheres with square potential wells or barriers , 1976 .

[245]  R. Wyatt,et al.  Complex-extended Bohmian mechanics. , 2010, The Journal of chemical physics.

[246]  C. Meier,et al.  Quantum-classical dynamics including continuum states using quantum trajectories , 2002 .

[247]  S. Miret-Artés,et al.  A trajectory-based understanding of quantum interference , 2008, 0806.2105.

[248]  W. Struyve Pilot-wave theory and quantum fields , 2007, Reports on progress in physics. Physical Society.

[249]  R. Wyatt,et al.  A new method for wave packet dynamics: Derivative propagation along quantum trajectories , 2003 .

[250]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[251]  Making nonlocal reality compatible with relativity , 2010, 1002.3226.

[252]  C. Yang Quantum motion in complex space , 2007 .

[253]  N. Makri,et al.  Monte Carlo Bohmian Dynamics from Trajectory Stability Properties , 2004 .

[254]  Datta,et al.  Nonequilibrium Green's-function method applied to double-barrier resonant-tunneling diodes. , 1992, Physical review. B, Condensed matter.

[255]  Eitan Abraham,et al.  Two‐dimensional time‐dependent quantum‐mechanical scattering event , 1984 .

[256]  Riccati differential equation for quantum mechanical bound states: Comparison of numerical integrators , 2008 .

[257]  J. Suñé,et al.  Towards the Monte Carlo simulation of resonant tunnelling diodes using time-dependent wavepackets and Bohm trajectories , 1999 .

[258]  S. Miret-Artés,et al.  Interplay of causticity and vorticality within the complex quantum Hamilton-Jacobi formalism , 2007, 0710.2841.

[259]  N. Makri Forward-Backward Quantum Dynamics for Time Correlation Functions , 2004 .

[260]  R. Wyatt,et al.  Quantum interference within the complex quantum Hamilton–Jacobi formalism , 2009, 0909.0045.

[261]  Roderich Tumulka,et al.  What Is Bohmian Mechanics , 2001, Compendium of Quantum Physics.

[262]  Goldstein,et al.  Nonlocality, Lorentz invariance, and Bohmian quantum theory. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[263]  R. A. Leacock,et al.  Hamilton-Jacobi/action-angle quantum mechanics , 1983 .

[264]  G. Parlant,et al.  On the dynamics of coupled Bohmian and phase-space variables: a new hybrid quantum-classical approach. , 2004, The Journal of chemical physics.

[265]  J. Smith Quantum Process , 2003, quant-ph/0307037.

[266]  Farhard Faisal,et al.  DEFINITION OF LYAPUNOV EXPONENTS AND KS ENTROPY IN QUANTUM DYNAMICS , 1995 .

[267]  F. Traversa,et al.  Improving the intrinsic cut-off frequency of gate-all-around quantum-wire transistors without channel length scaling , 2013 .

[268]  THE EQUIVALENCE POSTULATE OF QUANTUM MECHANICS , 1998, hep-th/9809127.

[269]  Basil J. Hiley,et al.  A quantum potential description of one-dimensional time-dependent scattering from square barriers and square wells , 1982 .

[270]  C. Dewdney,et al.  What happens in a spin measurement , 1986 .

[271]  D. Tannor,et al.  Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .

[272]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[273]  The Bohm quantum potential and the classical limit of quantum mechanics , 2003 .

[274]  X. Oriols,et al.  Time-dependent quantum current for independent electrons driven under nonperiodic conditions , 2005 .

[275]  F. Borondo,et al.  Particle diffraction studied using quantum trajectories , 2002 .

[276]  B. Hiley,et al.  Quantum State Teleportation Understood Through the Bohm Interpretation , 1999 .

[277]  Seven steps towards the classical world , 2001, quant-ph/0112005.

[278]  Causal interpretation of Fermi fields , 1988 .

[279]  C. Meier Mixed quantum-classical treatment of vibrational decoherence. , 2004, Physical review letters.

[280]  D. Dürr,et al.  What does one measure when one measures the arrival time of a quantum particle? , 2013, Physical review letters.

[281]  Relativistic Quantum Mechanics and the Bohmian Interpretation , 2004, quant-ph/0406173.

[282]  Ballistic transport: A view from the quantum theory of motion , 1994, cond-mat/9408063.

[283]  Relativistically invariant extension of the de Broglie–Bohm theory of quantum mechanics , 2002, quant-ph/0202104.

[284]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[285]  Basile F. E. Curchod,et al.  Nonadiabatic coupling vectors for excited states within time-dependent density functional theory in the Tamm-Dancoff approximation and beyond. , 2010, The Journal of chemical physics.

[286]  M. Born Zur Quantenmechanik der Stoßvorgänge , 1926 .

[287]  Quantum Transformations , 1998, hep-th/9801033.

[288]  P. Chattaraj,et al.  The quantum theory of motion and signatures of chaos in the quantum behaviour of a classically chaotic system , 1996 .

[289]  C. R. Leavens Traversal times for rectangular barriers within Bohm's causal interpretation of quantum mechanics , 1990 .

[290]  F. Herrmann,et al.  Which way does the light go , 2002 .

[291]  Quantum initial value representations using approximate Bohmian trajectories , 2003, quant-ph/0304012.

[292]  Quantum relaxation dynamics using Bohmian trajectories , 2001 .

[293]  Christos Efthymiopoulos,et al.  Quantum Vortices and Trajectories in Particle Diffraction , 2011, Int. J. Bifurc. Chaos.

[294]  M. Büttiker Coherent and sequential tunneling in series barriers , 1988 .

[295]  Are Bohmian trajectories real? On the dynamical mismatch between de Broglie-Bohm and classical dynamics in semiclassical systems , 2006, quant-ph/0609172.

[296]  The Bohmian Model of Quantum Cosmology , 1994, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[297]  J. Suñé,et al.  Many-particle transport in the channel of quantum wire double-gate field-effect transistors with charged atomistic impurities , 2010 .

[298]  P. Ghose On the incompatibility of standard quantum mechanics and conventional de Broglie-Bohm theory , 2001, quant-ph/0103126.

[299]  I. Christov Correlated non-perturbative electron dynamics with quantum trajectories. , 2006, Optics express.

[300]  C. Dewdney,et al.  A relativistically covariant version of Bohm's quantum field theory for the scalar field , 2004, quant-ph/0407089.

[301]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[302]  Sawada,et al.  Mean-trajectory approximation for charge- and energy-transfer processes at surfaces. , 1985, Physical review. B, Condensed matter.

[303]  S. Ramo Currents Induced by Electron Motion , 1939, Proceedings of the IRE.

[304]  Floyd Closed-form solutions for the modified potential. , 1986, Physical Review D, Particles and fields.

[305]  F Calmon,et al.  Time-Dependent Many-Particle Simulation for Resonant Tunneling Diodes: Interpretation of an Analytical Small-Signal Equivalent Circuit , 2011, IEEE Transactions on Electron Devices.

[306]  Joseph E. Subotnik,et al.  How to recover Marcus theory with fewest switches surface hopping: add just a touch of decoherence. , 2012, The Journal of chemical physics.

[307]  Hans Westman,et al.  Dynamical origin of quantum probabilities , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[308]  Roderich Tumulka,et al.  Bohmian mechanics and quantum field theory. , 2003, Physical review letters.

[309]  J. Hirschfelder,et al.  Quantum mechanical streamlines. III. Idealized reactive atom–diatomic molecule collision , 1976 .

[310]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[311]  Sheldon Goldstein,et al.  Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory , 2003, quant-ph/0308038.

[312]  H. Westman,et al.  A minimalist pilot-wave model for quantum electrodynamics , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[313]  A causal look into the quantum Talbot effect. , 2007, The Journal of chemical physics.

[314]  A. Donoso,et al.  Quantum tunneling using entangled classical trajectories. , 2001, Physical review letters.

[315]  Pellegrini Electric charge motion, induced current, energy balance, and noise. , 1986, Physical review. B, Condensed matter.

[316]  Robert E. Wyatt,et al.  Electronic transitions with quantum trajectories. II , 2001 .

[317]  R. Wyatt,et al.  Dynamics of the Collinear H+H2 Reaction. I. Probability Density and Flux , 1971 .

[318]  F. Borondo,et al.  Causal trajectories description of atom diffraction by surfaces , 2000 .

[319]  Complete Hamiltonian Description of Wave-Like Features in Classical and Quantum Physics , 2007 .

[320]  Weak measurement and Bohmian conditional wave functions , 2013, 1305.2409.

[321]  H.J. De Los Santos,et al.  An efficient HBT/RTD oscillator for wireless applications , 2001, IEEE Microwave and Wireless Components Letters.

[322]  C. Winterfeldt,et al.  Colloquium: Optimal control of high-harmonic generation , 2008 .

[323]  Linda E Reichl,et al.  The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations , 2004 .

[324]  C. Yang The origin and proof of quantization axiom p→pˆ=-iℏ∇ in complex spacetime , 2007 .

[325]  K. Górska,et al.  Bohr's correspondence principle: The cases for which it is exact , 2002 .

[326]  Robust weak-measurement protocol for Bohmian velocities , 2012, 1211.2357.

[327]  K. Mathew,et al.  Coherent States and Modified de Broglie-Bohm Complex Quantum Trajectories , 2011, 1104.3197.

[328]  S. Parrott,et al.  Comments on "An experimental test of non-local realism" by S. Groeblacher, T. Paterek, R. Kaltenbaek, C. Bruckner, M. Zukovski, M. Aspelmeyer, and A. Zeilinger, Nature 446 (2007), 871-875 , 2007, 0707.3296.

[329]  N. Rosen The Relation Between Classical and Quantum Mechanics , 1964 .

[330]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[331]  How to introduce time operator , 2006, quant-ph/0609211.

[332]  Equivalence Principle, Planck Length and Quantum Hamilton-Jacobi Equation , 1998, hep-th/9809125.

[333]  S. Miret-Artés,et al.  Understanding interference experiments with polarized light through photon trajectories , 2009, 0907.2667.

[334]  Büttiker,et al.  Scattering theory of current and intensity noise correlations in conductors and wave guides. , 1992, Physical review. B, Condensed matter.

[335]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[336]  Gregory L. Baker,et al.  Chaotic dynamics: Contents , 1996 .

[337]  W. Shockley Currents to Conductors Induced by a Moving Point Charge , 1938 .

[338]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[339]  P. Brumer,et al.  Quantum decoherence of I2 in liquid xenon: a classical Wigner approach. , 2013, The Journal of chemical physics.

[340]  R. Wyatt,et al.  Hydrodynamic view of wave-packet interference: quantum caves. , 2008, Physical review letters.

[341]  E. Recami,et al.  Time operator in quantum mechanics , 1974 .

[342]  H. Wiseman Grounding Bohmian mechanics in weak values and bayesianism , 2007, 0706.2522.

[343]  Sharon Hammes-Schiffer,et al.  Proton-coupled electron transfer in solution, proteins, and electrochemistry. , 2008, The journal of physical chemistry. B.

[344]  I. Kenyon,et al.  Classical Mechanics (3rd edn) , 1985 .

[345]  M. Ratner,et al.  Dynamics of metal electron excitation in atom-surface collisions: A quantum wave packet approach , 1984 .

[346]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[347]  D. Ferry,et al.  Quantum transport beyond DC , 2013, Journal of Computational Electronics.

[348]  Can Bohmian trajectories account for quantum recurrences having classical periodicities , 2006, quant-ph/0607095.

[349]  A. Bolivar BOOK REVIEW: Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit , 2004 .

[350]  X. Cartoixà,et al.  Boundary conditions with Pauli exclusion and charge neutrality: application to the Monte Carlo simulation of ballistic nanoscale devices , 2008 .

[351]  D. Tannor,et al.  Response to “Comment on ‘Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics’ ” [J. Chem. Phys.127, 197101 (2007)] , 2007 .

[352]  M. Child,et al.  Molecular Collision Theory , 1976 .

[353]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[354]  A. Edelman,et al.  Random matrix theory , 2005, Acta Numerica.

[355]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .

[356]  D. Dürr,et al.  Can Bohmian mechanics be made relativistic? , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[357]  S. Colin,et al.  A Dirac sea pilot-wave model for quantum field theory , 2007, quant-ph/0701085.

[358]  X. Cartoixà,et al.  Time-dependent boundary conditions with lead-sample Coulomb correlations: Application to classical and quantum nanoscale electron device simulators , 2010 .

[359]  A non-local, Lorentz-invariant, hidden-variable interpretation of relativistic quantum mechanics based on particle trajectories , 2001, quant-ph/0110007.

[360]  Pinaki Mazumder,et al.  Digital circuit applications of resonant tunneling devices , 1998, Proc. IEEE.

[361]  G. D. Polavieja Exponential divergence of neighboring quantal trajectories. , 1996 .

[362]  James W. Mazzuca,et al.  The Schrödinger equation with friction from the quantum trajectory perspective. , 2013, The Journal of chemical physics.

[363]  Maximilian Schlosshauer,et al.  Decoherence and the Quantum-To-Classical Transition , 2008 .

[364]  The causal interpretation of dust and radiation fluid non-singular quantum cosmologies , 1997, gr-qc/9710084.

[365]  N. Rosen Mixed States in Classical Mechanics , 1965 .

[366]  Quantum Physics Without Quantum Philosophy , 2013 .

[367]  E. Floyd Bohr-Sommerfeld quantization with the effective action variable , 1982 .

[368]  Nancy Makri,et al.  Bohmian versus semiclassical description of interference phenomena , 2003 .

[369]  X. Oriols,et al.  Intrinsic noise in aggressively scaled field-effect transistors , 2009 .

[370]  I. Christov Dynamic correlations with time-dependent quantum Monte Carlo. , 2008, The Journal of chemical physics.

[371]  Deterministic chaos and the causal interpretation of quantum mechanics (Physics Letters A 201 (1995) 1) , 1996 .

[372]  Nicolaas P. Landsman,et al.  Essay Review of: Maximilian Schlosshauer, Decoherence and the Quantum-To-Classical Transition (Springer, Berlin, 2007) , 2009 .

[373]  J. Lundeen,et al.  Direct measurement of the quantum wavefunction , 2011, Nature.

[374]  C. Yang Modeling quantum harmonic oscillator in complex domain , 2006 .

[375]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[376]  de Broglie-Bohm formulation of quantum mechanics, quantum chaos and breaking of time-reversal invariance , 1998 .

[377]  Sheldon Goldstein,et al.  Quantum chaos, classical randomness, and Bohmian mechanics , 1992 .

[378]  D. Bohm PROOF THAT PROBABILITY DENSITY APPROACHES //psi//$sup 2$ IN CAUSAL INTERPRETATION OF THE QUANTUM THEORY , 1953 .

[379]  Á. S. Sanz,et al.  Investigating transition state resonances in the time domain by means of Bohmian mechanics: The F + HD reaction , 2011, 1105.1258.

[380]  Remarks on identical particles in de Broglie-Bohm theory , 1998, quant-ph/9811054.

[381]  R. Tumulka,et al.  Can we make a Bohmian electron reach the speed of light, at least for one instant? , 2008, 0806.4476.

[382]  I. Christov Correlated electron dynamics with time-dependent quantum Monte Carlo: three-dimensional helium. , 2011, The Journal of chemical physics.

[383]  S. Miret-Artés,et al.  Atom-surface diffraction: A Trajectory description , 2004 .

[384]  C.R. Leavans,et al.  Are predicted superluminal tunneling times an artifact of using the nonrelativistic Schrödinger equation? , 1998 .

[385]  L. Plaja,et al.  Photoionization with orbital angular momentum beams. , 2010, Optics express.

[386]  A. Makowski,et al.  Regular and chaotic causal trajectories for the Bohm potential in a restricted space , 1998 .

[387]  B. Hiley The Undivided Universe , 1993 .

[388]  F. Traversa,et al.  Computation of quantum electrical currents through the ramo-shockley- pellegrini theorem with trajectories , 2012 .

[389]  Deterministic chaos in entangled eigenstates , 2008 .

[390]  B. Pellegrini,et al.  Extension of the electrokinematics theorem to the electromagnetic field and quantum mechanics , 1993 .

[391]  T. Takabayasi,et al.  On the Formulation of Quantum Mechanics associated with Classical Pictures , 1952 .