A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus

[1]  P. Stepnowski,et al.  Antibiotic resistance genes identified in wastewater treatment plant systems - A review. , 2019, The Science of the total environment.

[2]  Bogumil J. Karas,et al.  Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing , 2019, Nature Communications.

[3]  W. Jiao,et al.  A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. , 2019, Environment international.

[4]  R. Chemaly,et al.  A Systematic and Critical Review of Bacteriophage Therapy Against Multidrug-resistant ESKAPE Organisms in Humans. , 2018, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[5]  A. Burt,et al.  A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes , 2018, Nature Biotechnology.

[6]  M. Javed,et al.  CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms , 2018, Current Microbiology.

[7]  S. Partridge,et al.  Mobile Genetic Elements Associated with Antimicrobial Resistance , 2018, Clinical Microbiology Reviews.

[8]  Gunnar H. D. Poplawski,et al.  Super-Mendelian inheritance mediated by CRISPR/Cas9 in the female mouse germline , 2018, Nature.

[9]  K. Prather,et al.  Scarless Cas9 Assisted Recombineering (no‐SCAR) in Escherichia coli, an Easy‐to‐Use System for Genome Editing , 2017, Current protocols in molecular biology.

[10]  Ryan T Gill,et al.  Rapid and Efficient One-Step Metabolic Pathway Integration in E. coli. , 2016, ACS synthetic biology.

[11]  D. Bikard,et al.  Consequences of Cas9 cleavage in the chromosome of Escherichia coli , 2016, Nucleic acids research.

[12]  K. Murphy λ Recombination and Recombineering , 2016, EcoSal Plus.

[13]  E. Bier,et al.  The dawn of active genetics , 2016, BioEssays : news and reviews in molecular, cellular and developmental biology.

[14]  Andrea Crisanti,et al.  A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae , 2015, Nature Biotechnology.

[15]  Ethan Bier,et al.  Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi , 2015, Proceedings of the National Academy of Sciences.

[16]  James E. DiCarlo,et al.  Safeguarding CRISPR-Cas9 gene drives in yeast , 2015, Nature Biotechnology.

[17]  Ethan Bier,et al.  The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations , 2015, Science.

[18]  Timothy K Lu,et al.  Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases , 2014, Nature Biotechnology.

[19]  C. Rubinstein,et al.  Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila , 2014, Genetics.

[20]  Xintian Li,et al.  Recombineering: Genetic Engineering in Bacteria Using Homologous Recombination , 2003, Current protocols in molecular biology.

[21]  Jingdong Tian,et al.  Circular polymerase extension cloning. , 2014, Methods in molecular biology.

[22]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[23]  T. Johnson,et al.  Pathogenomics of the Virulence Plasmids of Escherichia coli , 2009, Microbiology and Molecular Biology Reviews.