Measurements of hard x-ray emission from runaway electrons in DIII-D

The spatial distribution of runaway electron (RE) strikes to the wall during argon pellet-initiated rapid shutdown of diverted and limited plasma shapes in DIII-D is studied using a new array of hard x-ray (HXR) scintillators. Two plasma configurations were investigated: an elongated diverted H-mode and a low-elongation limited L-mode. HXR emission from MeV level REs generated during the argon pellet injection is observed during the thermal quench (TQ) in diverted discharges from REs lost into the divertor. In limiter discharges, this prompt TQ loss is reduced, suggesting improved TQ confinement of REs in this configuration. During the plateau phase when the plasma current is carried by REs, toroidally symmetric HXR emission from remaining confined REs is seen. Transient HXR bursts during this RE current plateau suggest the presence of a small level of wall losses due to the presence of an unidentified instability. Eventually, an abrupt final loss of the remaining RE current occurs. This final loss HXR emission shows a strong toroidal peaking and a consistent spatiotemporal evolution that suggests the development of a kink instability.

[1]  J. Röpcke,et al.  Applications of quantum cascade lasers in plasma diagnostics: a review , 2012 .

[2]  D. A. Humphreys,et al.  Effect of applied toroidal electric field on the growth/decay of plateau-phase runaway electron currents in DIII-D , 2011 .

[3]  D. A. Humphreys,et al.  Novel rapid shutdown strategies for runaway electron suppression in DIII-D , 2011 .

[4]  D. Humphreys,et al.  Pellet interaction with runaway electrons , 2011 .

[5]  J. Contributors,et al.  Heat load measurements on the JET first wall during disruptions , 2011 .

[6]  L. Lao,et al.  Runaway electron confinement modelling for rapid shutdown scenarios in DIII-D, Alcator C-Mod and ITER , 2011 .

[7]  Tünde Fülöp,et al.  Runaway electron drift orbits in magnetostatic perturbed fields , 2011 .

[8]  G. Tynan,et al.  Spatially distributed scintillator arrays for diagnosing runaway electron transport and energy behavior in tokamaks. , 2010, The Review of scientific instruments.

[9]  Yingying Li,et al.  Observation of runaway electron beams by visible color camera in the Experimental Advanced Superconducting Tokamak. , 2010, The Review of scientific instruments.

[10]  T. Fülöp,et al.  Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER , 2011 .

[11]  D. A. Humphreys,et al.  Experiments in DIII-D toward achieving rapid shutdown with runaway electron suppression , 2009 .

[12]  T. Petrie,et al.  Simulating ITER plasma startup and rampdown scenarios in the DIII-D tokamak , 2009 .

[13]  T. Fülöp,et al.  Magnetic field threshold for runaway generation in tokamak disruptions , 2009 .

[14]  Erwin Verwichte,et al.  Hot tail runaway electron generation in tokamak disruptions , 2008 .

[15]  J. Manickam,et al.  Chapter 3: MHD stability, operational limits and disruptions , 2007 .

[16]  M. A. Zeeland,et al.  Fiber optic two-color vibration compensated interferometer for plasma density measurements , 2006 .

[17]  M. Lamoureux,et al.  General deconvolution of thin-target and thick-target Bremsstrahlung spectra to determine electron energy distributions , 2006 .

[18]  T. Fülöp,et al.  Destabilization of magnetosonic-whistler waves by a relativistic runaway beam , 2006 .

[19]  D. Whyte,et al.  Momentum-space study of the effect of bremsstrahlung radiation on the energy of runaway electrons in tokamaks , 2005 .

[20]  H. Takenaga,et al.  Characteristics of Post-Disruption Runaway Electrons with Impurity Pellet Injection , 2005 .

[21]  R. Yoshino,et al.  Study of plasma termination using high-Z noble gas puffing in the JT-60U tokamak , 2005 .

[22]  V. Rozhansky,et al.  Measurements of impurity and heat dynamics during noble gas jet-initiated fast plasma shutdown for disruption mitigation in DIII-D , 2004 .

[23]  F. Andersson,et al.  Current dynamics during disruptions in large tokamaks. , 2004, Physical review letters.

[24]  V. Basiuk,et al.  Effects of supra-thermal particle impacts on Tore Supra plasma facing components , 2003 .

[25]  D. A. Humphreys,et al.  Disruption mitigation with high-pressure noble gas injection , 2002 .

[26]  R. R. Khayrutdinov,et al.  Runaway current termination in JT-60U , 2002 .

[27]  A. Solov'yov,et al.  The full relativistic description of the bremsstrahlung process in a charged particle-atom collision , 2001 .

[28]  N. J. Lopes Cardozo,et al.  A synchrotron radiation diagnostic to observe relativistic runaway electrons in a tokamak plasma , 2001 .

[29]  Lamoureux,et al.  Bremsstrahlung from thick targets and a diagnostic for electron energy distributions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Shinji Tokuda,et al.  Runaway electrons in magnetic turbulence and runaway current termination in tokamak discharges , 2000 .

[31]  V. D. Pustovitov,et al.  Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems , 2000 .

[32]  D. Humphreys,et al.  Analytic modeling of axisymmetric disruption halo currents , 1999 .

[33]  S. Kálvin,et al.  Modelling of impurity pellet ablation in ASDEX Upgrade (neon) and Wendelstein W7-AS (carbon) by means of a radiative (`killer') pellet code , 1999 .

[34]  R. Yoshino,et al.  Generation and termination of runaway electrons at major disruptions in JT-60U , 1999 .

[35]  I. Entrop Confinement of relativistic runaway electrons in tokamak plasmas , 1999 .

[36]  P Barabaschi,et al.  Halo current, runaway electrons and disruption mitigation in ITER , 1997 .

[37]  M. Rosenbluth,et al.  Theory for avalanche of runaway electrons in tokamaks , 1997 .

[38]  D. Guilhem,et al.  Runaway electron damage to the Tore Supra Phase III outboard pump limiter , 1997 .

[39]  R. Jaspers,et al.  Relativistic runaway electrons in tokamak plasmas , 1995 .

[40]  Y. Takase,et al.  Photon activation of the Alcator C-MOD limiter and RF antenna , 1995 .

[41]  Jaspers,et al.  Islands of runaway electrons in the TEXTOR tokamak and relation to transport in a stochastic field. , 1994, Physical review letters.

[42]  H.-W. Bartels Impact of runaway electrons , 1994 .

[43]  R. Jayakumar,et al.  Collisional avalanche exponentiation of runaway electrons in electrified plasmas , 1993 .

[44]  M. J. Berger ESTAR, PSTAR, and ASTAR: Computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions , 1992 .

[45]  Z. Yoshida A self‐consistent equilibrium model of plasma–beam systems , 1989 .

[46]  J. Haskovec,et al.  Toroidal and poloidal soft x-ray imaging system on the DIII-D tokamak , 1988 .

[47]  J. Lohr Electron density measurements from cutoff of electron cyclotron emission in the DIII‐D tokamak , 1988 .

[48]  H. Knoepfel,et al.  Runaway electrons in toroidal discharges , 1979 .

[49]  R. Davidson,et al.  Influence of self-fields on the filamentation instability in relativistic beam-plasma systems , 1975 .

[50]  C. Kapetanakos Filamentation of intense relativistic electron beams propagating in dense plasmas , 1974 .

[51]  N. Dyson,et al.  X-rays in atomic and nuclear physics , 1990 .

[52]  H. Dreicer,et al.  Electron and Ion Runaway in a Fully Ionized Gas. I , 1959 .

[53]  Hans A. Bethe,et al.  On the Stopping of Fast Particles and on the Creation of Positive Electrons , 1934 .

[54]  H. Kramers,et al.  XCIII. On the theory of X-ray absorption and of the continuous X-ray spectrum , 1923 .