THE COMPUTATIONAL COMPLEXITY OF CONVEX BODIES
暂无分享,去创建一个
[1] Mihalis Yannakakis,et al. Expressing combinatorial optimization problems by linear programs , 1991, STOC '88.
[2] N. Tomczak-Jaegermann. Banach-Mazur distances and finite-dimensional operator ideals , 1989 .
[3] J. Lindenstrauss,et al. Approximation of zonoids by zonotopes , 1989 .
[4] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[5] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[6] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .
[7] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[8] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[9] K. Ball. An Elementary Introduction to Modern Convex Geometry , 1997 .
[10] William J. Cook,et al. Combinatorial optimization , 1997 .
[11] Egon Balas. Projection and Lifting in Combinatorial Optimization , 2001, Computational Combinatorial Optimization.
[12] Arkadi Nemirovski,et al. On Polyhedral Approximations of the Second-Order Cone , 2001, Math. Oper. Res..
[13] Etienne de Klerk,et al. Aspects of Semidefinite Programming , 2002 .
[14] E. D. Klerk,et al. Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .
[15] Alexander Barvinok. Approximating a Norm by a Polynomial , 2003 .
[16] Monique Laurent,et al. A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..
[17] Grigoriy Blekherman,et al. Convex geometry of orbits. , 2003, math/0312268.
[18] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[19] Noga Alon,et al. Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.
[20] Noga Alon,et al. Quadratic forms on graphs , 2005, STOC '05.
[21] S. Szarek. Convexity, complexity, and high dimensions , 2006 .
[22] Ellen Veomett. A Positive Semidefinite Approximation of the Symmetric Traveling Salesman Polytope , 2007, Discret. Comput. Geom..