Adaptive wavelet methods for elliptic partial differential equations with random operators
暂无分享,去创建一个
[1] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[2] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[3] Wolfgang Dahmen,et al. Adaptive eigenvalue computation: complexity estimates , 2007, Numerische Mathematik.
[4] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[5] Xin-She Yang,et al. Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.
[6] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[7] Claude Jeffrey Gittelson,et al. Adaptive Galerkin methods for parametric and stochastic operator equations , 2011 .
[8] Rob P. Stevenson,et al. Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..
[9] K. Ritter,et al. Adaptive Wavelet Methods for Elliptic Stochastic Partial Differential Equations , 2022 .
[10] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[11] Rob Stevenson,et al. Finite element wavelets with improved quantitative properties , 2009 .
[12] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[13] Rob Stevenson,et al. On the Compressibility of Operators in Wavelet Coordinates , 2004, SIAM J. Math. Anal..
[14] Arend Aalberthus Roeland Metselaar. Handling Wavelet Expansions in numerical Methods , 2002 .
[15] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[16] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[17] Rob Stevenson,et al. Adaptive wavelet methods for solving operator equations: An overview , 2009 .
[18] K. Mattbes. Bauer, K.: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. De Gruyter Lehrbuch. Walter de Gruyter & Co., Berlin 1968. 342 S., Preis DM 32.— , 1971 .
[19] Massimo Fornasier,et al. Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..
[20] Claude Jeffrey Gittelson,et al. An adaptive stochastic Galerkin method , 2011 .
[21] Ronald L. Rivest,et al. Introduction to Algorithms, third edition , 2009 .
[22] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[23] R. DeVore,et al. ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .
[24] I. Babuska,et al. Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .
[25] Wolfgang Dahmen,et al. Adaptive application of operators in standard representation , 2006, Adv. Comput. Math..
[26] Rob P. Stevenson,et al. An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..
[27] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[28] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[29] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[30] Claude Jeffrey Gittelson,et al. An adaptive stochastic Galerkin method for random elliptic operators , 2013, Math. Comput..
[31] P. Frauenfelder,et al. Finite elements for elliptic problems with stochastic coefficients , 2005 .
[32] Rob Stevenson,et al. An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .
[33] Christoph Schwab,et al. Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..
[34] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[35] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[36] Claude Jeffrey Gittelson,et al. Stochastic Galerkin approximation of operator equations with infinite dimensional noise , 2011 .
[37] M. Fornasier,et al. Nonlinear and adaptive frame approximation schemes for elliptic PDEs: Theory and numerical experiments , 2009 .
[38] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[39] M. Fornasier,et al. Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .
[40] C. Schwab,et al. Sparse high order FEM for elliptic sPDEs , 2009 .
[41] Claude Jeffrey Gittelson,et al. Uniformly convergent adaptive methods for a class of parametric operator equations , 2012 .
[42] Rob P. Stevenson,et al. Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..