An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage

[1]  Yayuan Liu,et al.  Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries , 2017, Science Advances.

[2]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[3]  Jeff F. Bonnett,et al.  Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies , 2017 .

[4]  Shijie Cheng,et al.  Liquid Metal Electrodes for Energy Storage Batteries , 2016 .

[5]  Vincent L. Sprenkle,et al.  Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density , 2016, Nature Communications.

[6]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[7]  Kai Liu,et al.  Honeycomb-alumina supported garnet membrane: Composite electrolyte with low resistance and high strength for lithium metal batteries , 2015 .

[8]  Donald R. Sadoway,et al.  Self-healing Li–Bi liquid metal battery for grid-scale energy storage , 2015 .

[9]  Ashok Kumar Baral,et al.  Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. , 2015, The journal of physical chemistry letters.

[10]  Kai Liu,et al.  Garnet-type Li6.4La3Zr1.4Ta0.6O12 thin sheet: Fabrication and application in lithium–hydrogen peroxide semi-fuel cell , 2014 .

[11]  Donald R. Sadoway,et al.  Lithium–antimony–lead liquid metal battery for grid-level energy storage , 2014, Nature.

[12]  Chang-An Wang,et al.  Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible , 2014 .

[13]  Jun Liu,et al.  Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage , 2014, Nature Communications.

[14]  Hojong Kim,et al.  Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries , 2014 .

[15]  Hojong Kim,et al.  Calcium–bismuth electrodes for large-scale energy storage (liquid metal batteries) , 2013 .

[16]  Toshihiro Kasuga,et al.  Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12 , 2013 .

[17]  Gino Mariotto,et al.  Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12 , 2013 .

[18]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[19]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[20]  D. Bradwell,et al.  Magnesium-antimony liquid metal battery for stationary energy storage. , 2012, Journal of the American Chemical Society.

[21]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[22]  Ying Jin,et al.  Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method , 2011 .

[23]  G. Graff,et al.  A Stable Vanadium Redox‐Flow Battery with High Energy Density for Large‐Scale Energy Storage , 2011 .

[24]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[25]  Jeremy J. Titman,et al.  Switching on fast lithium ion conductivity in garnets : the structure and transport properties of Li3+xNd3Te2-xSbxO12 , 2008 .

[26]  M. Armand,et al.  Building better batteries , 2008, Nature.

[27]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[28]  K. Amine,et al.  Change of Conductivity with Salt Content, Solvent Composition, and Temperature for Electrolytes of LiPF6 in Ethylene Carbonate-Ethyl Methyl Carbonate , 2001 .

[29]  Z. Moser,et al.  Bi-Li system thermodynamic properties and the phase diagram calculations , 1994 .

[30]  R. Huggins,et al.  Thermodynamic Study of the Lithium‐Tin System , 1981 .

[31]  M. Saboungi,et al.  Thermodynamic properties of a quasi‐ionic alloy from electromotive force measurements: The Li–Pb system , 1978 .

[32]  R. Huggins,et al.  Thermodynamic Properties of the Intermetallic Systems Lithium‐Antimony and Lithium‐Bismuth , 1978 .

[33]  E. Cairns,et al.  Secondary cells with lithium anodes and immobilized fused-salt electrolytes. [Bi or Te cathodes, LiF--LiCl--LiI paste electrolyte, liquid electrodes, 380° to 485°C, 360 W/lb, 80 Wh/lb] , 1968 .

[34]  E. Cairns,et al.  GALVANIC CELLS WITH FUSED-SALT ELECTROLYTES. , 1967 .

[35]  Robert D Weaver,et al.  The Sodium|Tin Liquid‐Metal Cell , 1962 .