Integrality gaps for colorful matchings

We study the integrality gap of the natural linear programming relaxation for the Bounded Color Matching (BCM) problem. We provide several families of instances and establish lower bounds on their integrality gaps and we study how the Sherali-Adams "lift-and-project" technique behaves on these instances. We complement these results by showing that if we exclude certain simple sub-structures from our input graphs, then the integrality gap of the natural linear formulation strictly improves. To prove this, we adapt for our purposes the results of Furedi (1981). We further leverage this to show upper bounds on the performance of the Sherali-Adams hierarchy when applied to the natural LP relaxation of the BCM problem. (C) 2018 Elsevier B.V. All rights reserved.

[1]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[2]  Van Bang Le,et al.  Complexity results for rainbow matchings , 2013, Theor. Comput. Sci..

[3]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[4]  Georgios Stamoulis,et al.  Approximation Algorithms for Bounded Color Matchings via Convex Decompositions , 2014, MFCS.

[5]  Gyanit Singh,et al.  Improved Approximation Guarantees through Higher Levels of SDP Hierarchies , 2008, APPROX-RANDOM.

[6]  Konstantinos Georgiou,et al.  On integrality ratios for asymmetric TSP in the Sherali–Adams hierarchy , 2013, Mathematical Programming.

[7]  Ojas Parekh,et al.  Generalized Hypergraph Matching via Iterated Packing and Local Ratio , 2014, WAOA.

[8]  Irena Rusu Maximum weight edge-constrained matchings , 2008, Discret. Appl. Math..

[9]  Jirí Matousek,et al.  Invitation to discrete mathematics , 1998 .

[10]  Levent Tunçel,et al.  Complexity Analyses of Bienstock-Zuckerberg and Lasserre Relaxations on the Matching and Stable Set Polytopes , 2011, IPCO.

[11]  Prasad Raghavendra,et al.  Approximating Sparsest Cut in Graphs of Bounded Treewidth , 2010, APPROX-RANDOM.

[12]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[13]  Tamon Stephen,et al.  On a Representation of the Matching Polytope Via Semidefinite Liftings , 1999, Math. Oper. Res..

[14]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[15]  Zoltán Füredi,et al.  Maximum degree and fractional matchings in uniform hypergraphs , 1981, Comb..

[16]  Aravind Srinivasan,et al.  Lift-and-round to improve weighted completion time on unrelated machines , 2015, STOC.

[17]  Venkatesan Guruswami,et al.  MaxMin allocation via degree lower-bounded arborescences , 2009, STOC '09.

[18]  Prasad Raghavendra,et al.  A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs , 2016, ICALP.

[19]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[20]  Ioannis Caragiannis Wavelength Management in WDM Rings to Maximize the Number of Connections , 2007, STACS.

[21]  Daniel Bienstock,et al.  Subset Algebra Lift Operators for 0-1 Integer Programming , 2004, SIAM J. Optim..

[22]  Raphael Yuster Almost Exact Matchings , 2011, Algorithmica.

[23]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[24]  Béla Bollobás,et al.  Proving Integrality Gaps without Knowing the Linear Program , 2006, Theory Comput..

[25]  Ojas Parekh Iterative Packing for Demand and Hypergraph Matching , 2011, IPCO.

[26]  Yuan Zhou,et al.  Approximation schemes via Sherali-Adams hierarchy for dense constraint satisfaction problems and assignment problems , 2014, ITCS.

[27]  Katta G. Murty,et al.  Matchings in colored bipartite networks , 2002, Discret. Appl. Math..

[28]  Manouchehr Zaker,et al.  Maximum transversal in partial Latin squares and rainbow matchings , 2007, Discret. Appl. Math..

[29]  Claire Mathieu,et al.  Semidefinite and linear programming integrality gaps for scheduling identical machines , 2016, IPCO.

[30]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[31]  Sanjeev Arora,et al.  New approximation guarantee for chromatic number , 2006, STOC '06.

[32]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[33]  Ian M. Wanless,et al.  Transversals in Latin Squares , 2009, 0903.5142.

[34]  Julián Mestre,et al.  Greedy in Approximation Algorithms , 2006, ESA.

[35]  Anupam Gupta,et al.  Sparsest cut on bounded treewidth graphs: algorithms and hardness results , 2013, STOC '13.

[36]  Konstantinos Georgiou,et al.  Lift-and-Project Methods for Set Cover and Knapsack , 2013, WADS.

[37]  Monaldo Mastrolilli,et al.  Bi-criteria and approximation algorithms for restricted matchings , 2013, Theor. Comput. Sci..

[38]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[39]  Avner Magen,et al.  Robust Algorithms for on Minor-Free Graphs Based on the Sherali-Adams Hierarchy , 2009, APPROX-RANDOM.

[40]  Graciela L. Nasini,et al.  Lift and project relaxations for the matching and related polytopes , 2004, Discret. Appl. Math..

[41]  Aris Pagourtzis,et al.  Randomized and Approximation Algorithms for Blue-Red Matching , 2007, MFCS.

[42]  A. V. Karzanov Maximum matching of given weight in complete and complete bipartite graphs , 1987 .

[43]  Konstantinos Georgiou,et al.  Understanding Set Cover: Sub-exponential Time Approximations and Lift-and-Project Methods , 2012, ArXiv.

[44]  Claire Mathieu,et al.  Integrality Gaps of Linear and Semi-Definite Programming Relaxations for Knapsack , 2011, IPCO.

[45]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[46]  Mihalis Yannakakis,et al.  The complexity of restricted spanning tree problems , 1982, JACM.

[47]  Jean B. Lasserre,et al.  An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs , 2002, SIAM J. Optim..

[48]  Wenceslas Fernandez de la Vega,et al.  Linear programming relaxations of maxcut , 2007, SODA '07.

[49]  David E. Woolbright An n x n Latin Square Has a Transversal with at Least n - square root of n Distinct Symbols , 1978, J. Comb. Theory, Ser. A.

[50]  Yuk Hei Chan,et al.  On linear and semidefinite programming relaxations for hypergraph matching , 2010, Mathematical Programming.

[51]  Alon Itai,et al.  Some Matching Problems for Bipartite Graphs , 1978, JACM.

[52]  Claire Mathieu,et al.  Sherali-adams relaxations of the matching polytope , 2009, STOC '09.

[53]  Aris Pagourtzis,et al.  Minimizing request blocking in all-optical rings , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).