Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides.

In this work, a dielectric waveguide mode solver is presented considering a general nonreciprocal permittivity tensor. The proposed method allows us to investigate important cases of practical interest in the field of integrated optics, such as magneto-optical isolators and anisotropic waveguides. Unlike the earlier developed mode solver, our approach allows for the precise computation of both forward and backward propagating modes in the nonreciprocal case, ensuring high accuracy and computational efficiency. As a result, the nonreciprocal loss/phase shift can be directly computed, avoiding the use of the perturbation method. To compute the electromagnetic modes, the Rayleigh-Ritz functional is derived for the non-self adjoint case, it is discretized using the node-based finite element method and the penalty function is added to remove the spurious solutions. The resulting quadratic eigenvalue problem is linearized and solved in terms of the propagation constant for a given frequency (i.e., γ-formulation). The main benefits of this formulation are that it avoids the time-consuming iterations and preserves the matrix sparsity. Finally, the method is used to study two examples of integrated optical isolators based on nonreciprocal phase shift and nonreciprocal loss effect, respectively. The developed method is then compared with the perturbation approach and its simplified formulation based on semivectorial approximation.

[1]  Masanori Koshiba,et al.  Vectorial Finite-Element Method Without Any Spurious Solutions for Dielectric Waveguiding Problems Using Transverse Magnetic-Field Component , 1986 .

[2]  V. E. Wood Magneto‐optical Effects of Hot Electrons , 1969 .

[3]  InGaAsP/InP evanescent mode waveguide optical isolators and their application to InGaAsP/InP/Si hybrid evanescent optical isolators , 2009 .

[4]  C. Chen,et al.  The Variational Principle for Non-Self-Adjoint Electromagnetic Problems , 1980 .

[5]  Paolo Pintus,et al.  Integrated 2.8 $\mu$m Laser Source in Al $_{2}$O $_{3}$:Er , 2011, Journal of Lightwave Technology.

[6]  T. Murphy,et al.  Vector Finite Difference Modesolver for Anisotropic Dielectric Waveguides , 2008, Journal of Lightwave Technology.

[7]  Tetsuya Mizumoto,et al.  Waveguide Optical Isolators for Integrated Optics , 2012 .

[8]  Yilong Lu,et al.  An efficient finite element solution of inhomogeneous anisotropic and lossy dielectric waveguides , 1993 .

[9]  H. Shimizu,et al.  Fabrication and characterization of an InGaAsP/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation , 2006, Journal of Lightwave Technology.

[10]  Jin-Fa Lee,et al.  Finite element analysis of lossy dielectric waveguides , 1994 .

[11]  H. Yokoi Calculation of nonreciprocal phase shift in magneto-optic waveguides with Ce:YIG layer , 2008 .

[12]  Yoshiaki Nakano,et al.  First Demonstration of TE Mode Nonreciprocal Propagation in an InGaAsP/InP Active Waveguide for an Integratable Optical Isolator , 2004 .

[13]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[14]  Jilin Tan,et al.  A new edge element analysis of dispersive waveguiding structures , 1995 .

[15]  N. G. Tarr,et al.  Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides , 2005, Journal of Lightwave Technology.

[16]  Luca Vincetti,et al.  PERFECTLY MATCHED ANISOTROPIC LAYERS FOR OPTICAL WAVEGUIDE ANALYSIS THROUGH THE FINITE-ELEMENT BEAM-PROPAGATION METHOD , 1999 .

[17]  J. Bowers,et al.  Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. , 2011, Optics express.

[18]  Paolo Pintus,et al.  Integrated 2.8 $\mu$ m Laser Source in Al $_{2}$ O $_{3}$ :Er $^{3+}$ Slot Waveguide on SOI , 2011 .

[19]  G. B. Montanari,et al.  Design of 980 nm-Pumped Waveguide Laser for Continuous Wave Operation in Ion Implanted ${\rm Er}{:}{\rm LiNbO}_{3}$ , 2011, IEEE Journal of Quantum Electronics.

[20]  Weng Cho Chew,et al.  A variational analysis of anisotropic, inhomogeneous dielectric waveguides , 1989 .

[21]  Joseph T. Boyd,et al.  Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides , 1997 .

[22]  Paolo Pintus,et al.  Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform. , 2013, Optics express.

[23]  G. Mur Edge elements, their advantages and their disadvantages , 1994 .

[24]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[25]  George Pan,et al.  General edge element approach to lossy and dispersive structures in anisotropic media , 1997 .

[26]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[27]  Manfred Eich,et al.  Resonance splitting in gyrotropic ring resonators. , 2010, Optics letters.

[28]  P. Pintus,et al.  Design of Magneto-Optical Ring Isolator on SOI Based on the Finite-Element Method , 2011, IEEE Photonics Technology Letters.

[29]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[30]  Manfred Hammer,et al.  Applications of magneto-optical waveguides in integrated optics: review , 2005 .

[31]  T. Shintaku,et al.  Magneto‐optic channel waveguides in Ce‐substituted yttrium iron garnet , 1993 .

[32]  T. Makimoto,et al.  Circuit theory for a class of anisotropic and gyrotropic thin‐film optical waveguides and design of nonreciprocal devices for integrated optics , 1974 .

[33]  Jin-Fa Lee,et al.  Full-wave analysis of dielectric waveguides using tangential vector finite elements , 1991 .

[34]  H. Shimizu,et al.  Semiconductor waveguide optical isolator based on nonreciprocal loss induced by ferromagnetic MnAs , 2006 .

[35]  Design of transverse electric ring isolators for ultra-low-loss Si3N4 waveguides based on the finite element method. , 2011, Optics letters.

[36]  O. Sakata,et al.  Metal/Semiconductor Interfaces Studied by Transmitted X-ray Reflectivity , 2004 .

[37]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[38]  J. Davies,et al.  Self-Adjoint Vector Variational Formulation for Lossy Anisotropic Dielectric Waveguide , 1986 .

[39]  Tetsuya Mizumoto,et al.  Magneto-optical isolator with silicon waveguides fabricated by direct bonding , 2008 .

[40]  Masanori Koshiba,et al.  Finite element formulation for lossy waveguides , 1988 .

[41]  M. Brodwin,et al.  The Solution of Guided Waves in Inhomogeneous Anisotropic Media by Perturbation and Variational Methods , 1965 .

[42]  N. Higham,et al.  Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems , 2008 .

[43]  P. Hertel,et al.  Enhancement of the nonreciprocal magneto‐optic effect of TM modes using iron garnet double layers with opposite Faraday rotation , 1995 .

[44]  B. M. A. Rahman,et al.  Penalty Function Improvement of Waveguide Solution by Finite Elements , 1984 .

[45]  G. S. Krinchik,et al.  Magneto‐optic Properties of Nickel, Iron, and Cobalt , 1968 .

[46]  P. Gelin,et al.  New method for determining the permeability tensor of magnetized ferrites in a wide frequency range , 2000 .

[47]  O. Zhuromskyy,et al.  Magnetooptical waveguides with polarization-independent nonreciprocal phase shift , 2001 .

[48]  E. M. Lifshitz,et al.  Electrodynamics of continuous media (in Russian) , 1982 .

[49]  R. Hoffmann Self-Adjoint Vector Variational Formulation for Lossy Anisotropic Dielectric Waveguide (Comments) , 1986 .

[50]  Paolo Pintus,et al.  Low-Threshold Pump Power and High Integration in Al $_{2}$ O $_{3}$ : Er $^{3+}$ Slot Waveguide Lasers on SOI , 2010 .

[51]  S. Selleri,et al.  An improved finite element method formulation for the analysis of nonlinear anisotropic dielectric waveguides , 1995 .

[52]  J. Zapata,et al.  An efficient finite element formulation to analyze waveguides with lossy inhomogeneous bi-anisotropic materials , 1996 .

[53]  A. Konrad,et al.  High-Order Triangular Finite Elements for Electromagnetic Waves in Anisotropic Media , 1977 .

[54]  P. Hertel,et al.  Analysis of polarization independent Mach-Zehnder-type integrated optical isolator , 1999 .

[55]  Stefano Selleri,et al.  Performance comparison of finite-element approaches for electromagnetic waveguides , 1997 .

[56]  Paul Van Dooren,et al.  Normwise Scaling of Second Order Polynomial Matrices , 2004, SIAM J. Matrix Anal. Appl..

[57]  Masanori Koshiba,et al.  Full vectorial finite element formalism for lossy anisotropic waveguides , 1989 .

[58]  Y. Shoji,et al.  Silicon waveguide optical circulator employing nonreciprocal phase shift , 2010, 2009 6th IEEE International Conference on Group IV Photonics.

[59]  P. Pintus,et al.  Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers , 2013, IEEE Photonics Journal.

[60]  Christophe Geuzaine,et al.  Waveguide Propagation Modes and Quadratic Eigenvalue Problems , 2006 .

[61]  Peter S. Pershan,et al.  Magneto‐Optical Effects , 1967 .

[62]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[63]  T Mizumoto,et al.  Demonstration of an Optical Isolator with a Semiconductor Guiding Layer that was Obtained by Use of a Nonreciprocal Phase Shift. , 2000, Applied optics.

[64]  Mahi R. Singh,et al.  Giant Faraday rotation in Bi(x)Ce(3-x)Fe5O12 epitaxial garnet films. , 2012, Optics express.

[65]  Ke Wu,et al.  Modeling lossy anisotropic dielectric waveguides with the method of lines , 1996 .

[66]  Luca Vincetti,et al.  Complex FEM modal solver of optical waveguides with PML boundary conditions , 2001 .

[67]  A. Sudbø,et al.  Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides , 1993 .

[68]  K. Ando,et al.  Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer , 1999, IEEE Photonics Technology Letters.

[69]  Charles Kittel,et al.  Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Materials at Microwave Frequencies , 1946 .