A scale-dependent finite difference method for time fractional derivative relaxation type equations

Fractional derivative relaxation type equations (FREs) including fractional diffusion equation and fractional relaxation equation, have been widely used to describe anomalous phenomena in physics. To utilize the characteristics of fractional dynamic systems, this paper proposes a scale-dependent finite difference method (S-FDM) in which the non-uniform mesh depends on the time fractional derivative order of FRE. The purpose is to establish a stable numerical method with low computation cost for FREs by making a bridge between the fractional derivative order and space-time discretization steps. The proposed method is proved to be unconditional stable with (2-{\alpha})-th convergence rate. Moreover, three examples are carried out to make a comparison among the uniform difference method, common non-uniform method and S-FDM in term of accuracy, convergence rate and computational costs. It has been confirmed that the S-FDM method owns obvious advantages in computational efficiency compared with uniform mesh method, especially for long-time range computation (e.g. the CPU time of S-FDM is ~1/400 of uniform mesh method with better relative error for time T=500 and fractional derivative order alpha=0.4).

[1]  Wen Chen,et al.  Boundary particle method for Laplace transformed time fractional diffusion equations , 2013, J. Comput. Phys..

[2]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[3]  D. Baleanu,et al.  Chaos synchronization of fractional chaotic maps based on the stability condition , 2016 .

[4]  Zhi‐zhong Sun,et al.  Lubich Second-Order Methods for Distributed-Order Time-Fractional Differential Equations with Smooth Solutions , 2016 .

[5]  Mark M. Meerschaert,et al.  Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme , 2015 .

[6]  Changpin Li,et al.  The finite difference method for Caputo-type parabolic equation with fractional Laplacian: One-dimension case , 2017 .

[7]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[8]  Yan Gu,et al.  Error bounds of singular boundary method for potential problems , 2017 .

[9]  Changpin Li,et al.  Fractional differential models for anomalous diffusion , 2010 .

[10]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[11]  HongGuang Sun,et al.  A variable-order fractal derivative model for anomalous diffusion , 2017 .

[12]  Jinhu Lü,et al.  Stability analysis of linear fractional differential system with multiple time delays , 2007 .

[13]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[14]  Hai-Wei Sun,et al.  Fast Numerical Contour Integral Method for Fractional Diffusion Equations , 2016, J. Sci. Comput..

[15]  Xiaoyun Jiang,et al.  Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative , 2012 .

[16]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[17]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[18]  Brian Berkowitz,et al.  Anomalous transport in laboratory‐scale, heterogeneous porous media , 2000 .

[19]  Zhi-Zhong Sun,et al.  Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..

[20]  Zhongdi Cen,et al.  A robust numerical method for a fractional differential equation , 2017, Appl. Math. Comput..

[21]  Chuanzeng Zhang,et al.  Analytical evaluation of the origin intensity factor of time-dependent diffusion fundamental solution for a matrix-free singular boundary method formulation , 2017 .

[22]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[23]  Suraj Suman Improvement in Image Enhancement using Fractional Derivative Techniques , 2015 .

[24]  Changpin Li,et al.  Finite difference methods with non-uniform meshes for nonlinear fractional differential equations , 2016, J. Comput. Phys..

[25]  Dumitru Baleanu,et al.  Fractional differential equations of Caputo-Katugampola type and numerical solutions , 2017, Appl. Math. Comput..

[26]  Hong Wang,et al.  Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations , 2016, Numerical Algorithms.

[27]  Andrea Villa,et al.  An implicit three-dimensional fractional step method for the simulation of the corona phenomenon , 2017, Appl. Math. Comput..

[28]  Wen Chen,et al.  A modified singular boundary method for three-dimensional high frequency acoustic wave problems , 2018 .

[29]  D. Benson,et al.  Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications , 2009 .

[30]  David A. Benson,et al.  Subordinated advection‐dispersion equation for contaminant transport , 2001 .

[31]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[32]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[33]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[34]  Leevan Ling,et al.  Method of approximate particular solutions for constant- and variable-order fractional diffusion models , 2015 .

[35]  Tong Zhang,et al.  A posteriori error estimates of finite element method for the time-dependent Navier-Stokes equations , 2017, Appl. Math. Comput..

[36]  Hongguang Sun,et al.  Understanding partial bed-load transport: Experiments and stochastic model analysis , 2015 .

[37]  Hongguang Sun,et al.  Anomalous diffusion modeling by fractal and fractional derivatives , 2010, Comput. Math. Appl..

[38]  Zhuo-Jia Fu,et al.  Explicit empirical formula evaluating original intensity factors of singular boundary method for potential and Helmholtz problems , 2016 .

[39]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[40]  K. Burrage,et al.  Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain , 2012 .

[41]  D. Baleanu,et al.  Riesz Riemann-Liouville difference on discrete domains. , 2016, Chaos.

[42]  Wen Chen,et al.  Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations , 2017 .

[43]  Guofei Pang,et al.  Space-fractional advection-dispersion equations by the Kansa method , 2015, J. Comput. Phys..

[44]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[45]  Hong Wang,et al.  A Fast Finite Element Method for Space-Fractional Dispersion Equations on Bounded Domains in ℝ2 , 2015, SIAM J. Sci. Comput..

[46]  Dumitru Baleanu,et al.  Chaos synchronization of the discrete fractional logistic map , 2014, Signal Process..

[47]  George Em Karniadakis,et al.  Adaptive finite element method for fractional differential equations using hierarchical matrices , 2016, 1603.01358.

[48]  Michael K. Ng,et al.  A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations , 2017, J. Comput. Phys..

[49]  HongGuang Sun,et al.  A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation , 2016, J. Comput. Phys..

[50]  A. Luongo,et al.  Can a semi-simple eigenvalue admit fractional sensitivities? , 2015, Appl. Math. Comput..

[51]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[52]  N. Ford,et al.  Numerical Solution of the Bagley-Torvik Equation , 2002, BIT Numerical Mathematics.