Damage in metal forming

[1]  A. Tekkaya,et al.  Prediction of void evolution in sheet bending based on statistically representative microstructural data for the Gurson-Tvergaard-Needleman model , 2020, 2006.15973.

[2]  A. Tekkaya,et al.  Damage-induced performance variations of cold forged parts , 2020 .

[3]  F. Walther,et al.  Torsion plastometer trials to investigate the effect of non-proportional loading paths in caliber rolling on damage and performance of metal parts , 2020, Production Engineering.

[4]  A. Tekkaya,et al.  Characterization of damage in forward rod extruded parts , 2020 .

[5]  A. Tekkaya,et al.  Prediction and analysis of damage evolution during caliber rolling and subsequent cold forward extrusion , 2020 .

[6]  A. Menzel,et al.  On mesh dependencies in finite-element-based damage prediction: application to sheet metal bending , 2020 .

[7]  S. Münstermann,et al.  The effects of shear affected zone on edge crack sensitivity in dual-phase steels , 2019, IOP Conference Series: Materials Science and Engineering.

[8]  A. Erman Tekkaya,et al.  Stress State Control by a Novel Bending Process and its Effect on Damage and Product Performance , 2019 .

[9]  Carl Kusche,et al.  Large-area, high-resolution characterisation and classification of damage mechanisms in dual-phase steel using deep learning , 2019, PloS one.

[10]  A. Tekkaya,et al.  Global and High-Resolution Damage Quantification in Dual-Phase Steel Bending Samples with Varying Stress States , 2019, Metals.

[11]  A. Tekkaya,et al.  Flow curves up to high strains considering load reversal and damage , 2019, International Journal of Material Forming.

[12]  Extended Gurson–Tvergaard–Needleman model for damage modeling and control in hot forming , 2019, CIRP Annals.

[13]  A. Tekkaya,et al.  Stress State Analysis of Radial Stress Superposed Bending , 2019, International Journal of Precision Engineering and Manufacturing.

[14]  J. Molina-Aldareguia,et al.  The Evolution of Internal Damage Identified by Means of X-ray Computed Tomography in Two Steels and the Ensuing Relation with Gurson’s Numerical Modelling , 2018, Metals.

[15]  B. Boyce,et al.  The mechanisms of ductile rupture , 2018, Acta Materialia.

[16]  D. Mohr,et al.  Ductile damage mechanism under shear-dominated loading: In-situ tomography experiments on dual phase steel and localization analysis , 2018, International Journal of Plasticity.

[17]  A. Erman Tekkaya,et al.  Influence of manufacturing processes on material characterization with the grooved in-plane torsion test , 2018, International Journal of Mechanical Sciences.

[18]  P. Bouchard,et al.  Computational Methods for Ductile Fracture Modeling at the Microscale , 2018, Archives of Computational Methods in Engineering.

[19]  L. Chan,et al.  Micro-voids quantification for damage prediction in warm forging of biocompatible alloys using 3D X-ray CT and RVE approach , 2018, Journal of Materials Processing Technology.

[20]  A. Tekkaya,et al.  Modelling of the blanking process of high-carbon steel using Lemaitre damage model , 2018, Comptes Rendus Mécanique.

[21]  M. Fu,et al.  Formability limits and process window based on fracture analysis of 5A02-O aluminium alloy in splitting spinning , 2018, Journal of Materials Processing Technology.

[22]  A. Tekkaya,et al.  Material characterization for plane and curved sheets using the in-plane torsion test – An overview , 2018, Journal of Materials Processing Technology.

[23]  A. Tekkaya,et al.  Stress State Control by a Novel Bending Process and its Effect on Damage Evolution , 2018, Volume 2: Materials; Joint MSEC-NAMRC-Manufacturing USA.

[24]  M. Bambach,et al.  Hot workability and microstructure evolution of pre-forms for forgings produced by additive manufacturing , 2018, Journal of Materials Processing Technology.

[25]  A. Tekkaya,et al.  Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels , 2018, Materials.

[26]  F. Hild,et al.  Effect of void arrangement on ductile damage mechanisms in nodular graphite cast iron: In situ 3D measurements , 2018 .

[27]  Carlos Felipe Guzmán,et al.  Damage prediction in single point incremental forming using an extended Gurson model , 2017, International Journal of Solids and Structures.

[28]  Dirk Mohr,et al.  Predicting shear fracture of aluminum 6016-T4 during deep drawing: Combining Yld-2000 plasticity with Hosford Coulomb fracture model , 2018 .

[29]  D. Green,et al.  Numerical analysis of damage evolution and formability of DP600 sheet with an extended Rousselier damage model , 2017 .

[30]  D. Mohr,et al.  Predicting the rate-dependent loading paths to fracture in advanced high strength steels using an extended mechanical threshold model , 2017 .

[31]  C. Tasan,et al.  Martensite size effects on damage in quenching and partitioning steels , 2017 .

[32]  Mohammad Javad Mirnia,et al.  Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion , 2017 .

[33]  A. Tekkaya,et al.  Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals , 2017 .

[34]  K. Ravi-Chandar,et al.  On the deformation and failure of Al 6061-T6 in plane strain tension evaluated through in situ microscopy , 2017, International Journal of Fracture.

[35]  S. Bruschi,et al.  Johnson-Cook based criterion incorporating stress triaxiality and deviatoric effect for predicting elevated temperature ductility of titanium alloy sheets , 2017 .

[36]  Trong-Son Cao,et al.  Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review , 2017 .

[37]  M. Worswick,et al.  Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching , 2017, Materials.

[38]  H. Noguchi,et al.  Bone-like crack resistance in hierarchical metastable nanolaminate steels , 2017, Science.

[39]  A. Takeuchi,et al.  Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography , 2017 .

[40]  Binglun Yin,et al.  Softening and hardening of yield stress by hydrogen–solute interactions , 2017 .

[41]  A. Tekkaya,et al.  Failure assessment in sheet metal forming using a phenomenological damage model and fracture criterion: experiments, parameter identification and validation , 2017 .

[42]  Jianguo Lin,et al.  Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling , 2017 .

[43]  F. Walther,et al.  Forming-induced damage and its effects on product properties , 2017 .

[44]  Zhenshan Cui,et al.  Investigation on the void closure efficiency in cogging processes of the large ingot by using a 3-D void evolution model , 2016 .

[45]  Jaimyun Jung,et al.  Factors governing hole expansion ratio of steel sheets with smooth sheared edge , 2016, Metals and Materials International.

[46]  P. Bouchard,et al.  Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging , 2016 .

[47]  Kun Yang,et al.  Numerical and experimental investigations on mechanical trimming process for hot stamped ultra-high strength parts , 2016 .

[48]  J. Gholipour,et al.  Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys. , 2016, Journal of engineering for gas turbines and power.

[49]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[50]  P. Bouchard,et al.  Influence of Lode angle on modelling of void closure in hot metal forming processes , 2016 .

[51]  Yazhi Li,et al.  Modified GTN model for a broad range of stress states and application to ductile fracture , 2016 .

[52]  H. Maier,et al.  Evaluation of Void Nucleation and Development during Plastic Deformation of Dual‐Phase Steel DP600 , 2016 .

[53]  Thomas Pardoen,et al.  Failure of metals I: Brittle and ductile fracture , 2016 .

[54]  A. Takeuchi,et al.  Diffraction-amalgamated grain boundary tracking for mapping 3D crystallographic orientation and strain fields during plastic deformation , 2016 .

[55]  P. Hodgson,et al.  Prediction of ductile failure in CP-Titanium as criterion of SPD process design , 2016 .

[56]  André Haufe,et al.  An incremental stress state dependent damage model for ductile failure prediction , 2016, International Journal of Fracture.

[57]  S. Bruschi,et al.  An improved damage evolution model to predict fracture of steel sheet at elevated temperature , 2016 .

[58]  H. Maier,et al.  Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes , 2016, Journal of Materials Engineering and Performance.

[59]  Bernd-Arno Behrens,et al.  Investigations of ductile damage during the process chains of toothed functional components manufactured by sheet-bulk metal forming , 2016, Prod. Eng..

[60]  A. Tekkaya,et al.  Analysis of shear cutting of dual phase steel by application of an advanced damage model , 2016 .

[61]  R. Srinivasan,et al.  The Interaction of Dislocations and Hydrogen-vacancy Complexes and Its Importance for Deformation- induced Proto Nano-voids Formation in α-Fe , 2015 .

[62]  Pierre-Olivier Bouchard,et al.  On the interest of using full field measurements in ductile damage model calibration , 2015 .

[63]  Thomas Pardoen,et al.  Damage and fracture of dual-phase steels: Influence of martensite volume fraction , 2015 .

[64]  P. Bouchard,et al.  A new body-fitted immersed volume method for the modeling of ductile fracture at the microscale: Analysis of void clusters and stress state effects on coalescence , 2015 .

[65]  C. Tasan,et al.  High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels , 2015 .

[66]  Stephane J. Marcadet,et al.  Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities , 2015 .

[67]  Microstructural topology effects on the onset of ductile failure in multi-phase materials – A systematic computational approach , 2015, 1604.02858.

[68]  J. Yang,et al.  Tensile Response of Two Nanoscale Bainite Composite-Like Structures , 2015, JOM.

[69]  Stefania Bruschi,et al.  Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars , 2015 .

[70]  Pierre-Olivier Bouchard,et al.  Void closure criteria for hot metal forming: A review , 2015 .

[71]  Cemal Cem Tasan,et al.  Retardation of plastic instability via damage-enabled microstrain delocalization , 2015, Journal of Materials Science.

[72]  C. Tasan,et al.  An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design , 2015 .

[73]  Dierk Raabe,et al.  Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite , 2015, Metallurgical and Materials Transactions A.

[74]  Michael Brünig,et al.  Stress state dependence of ductile damage and fracture behavior: Experiments and numerical simulations , 2015 .

[75]  G. Shen,et al.  The finite element analysis of ductile damage during hot stamping of 22MnB5 steel , 2015 .

[76]  P. Bouchard,et al.  Improved fracture criterion to chain forming stage and in use mechanical strength computations of metallic parts – Application to half-blanked components , 2015 .

[77]  P. Bouchard,et al.  A comparative study of three ductile damage approaches for fracture prediction in cold forming processes , 2015 .

[78]  B. M. Dariani,et al.  Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model , 2015 .

[79]  Peter Groche,et al.  Metal forming beyond shaping: Predicting and setting product properties , 2015 .

[80]  Dierk Raabe,et al.  Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys , 2014 .

[81]  C. Tasan,et al.  Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations , 2014 .

[82]  S. Münstermann,et al.  A method to quantitatively upscale the damage initiation of dual-phase steels under various stress states from microscale to macroscale , 2014 .

[83]  A. H. van den Boogaard,et al.  Influence of ring growth rate on damage development in hot ring rolling , 2014 .

[84]  Pierre-Olivier Bouchard,et al.  A new finite element approach for modelling ductile damage void nucleation and growth—analysis of loading path effect on damage mechanisms , 2014 .

[85]  Pierre-Olivier Bouchard,et al.  Fracture mechanisms under monotonic and non-monotonic low Lode angle loading , 2014 .

[86]  Pierre Montmitonnet,et al.  A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality , 2014 .

[87]  Mohsen Hamedi,et al.  Investigating the effects of cross wedge rolling tool parameters on formability of Nimonic® 80A and Nimonic® 115 superalloys , 2014 .

[88]  I. Sinclair,et al.  In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet , 2014 .

[89]  Christian C. Roth,et al.  Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling , 2014 .

[90]  M. Koyama,et al.  Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel , 2014 .

[91]  Pierre Montmitonnet,et al.  Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests - Application to the identification of a shear modified GTN model , 2014 .

[92]  Chengying Xu,et al.  Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes , 2014 .

[93]  P. Withers,et al.  Quantitative X-ray tomography , 2014 .

[94]  Y. Lin,et al.  Prediction of Ductile Fracture Behaviors for 42CrMo Steel at Elevated Temperatures , 2014, Journal of Materials Engineering and Performance.

[95]  Takefumi Arikawa,et al.  Influence of Anvil Shape of Surface Crack Generation in Large Hot Forging Process , 2014 .

[96]  Pierre-Olivier Bouchard,et al.  Modelling the strength of self-piercing riveted joints , 2014 .

[97]  Sang-Woo Kim,et al.  Comparative Study on Failure Prediction in Warm Forming Processes of Mg Alloy Sheet by the FEM and Ductile Fracture Criteria , 2014, Metallurgical and Materials Transactions B.

[98]  Hoon Huh,et al.  Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality , 2013 .

[99]  Pierre Montmitonnet,et al.  Identification methodology and comparison of phenomenological ductile damage models via hybrid numerical–experimental analysis of fracture experiments conducted on a zirconium alloy , 2013 .

[100]  Pierre-Olivier Bouchard,et al.  Three-dimensional analysis of real void closure at the meso-scale during hot metal forming processes , 2013 .

[101]  G. Germain,et al.  Experimental characterization and numerical modeling of micromechanical damage under different stress states , 2013 .

[102]  Pierre-Olivier Bouchard,et al.  Kriging metamodel global optimization of clinching joining processes accounting for ductile damage , 2013 .

[103]  Hardy Mohrbacher,et al.  Reverse metallurgical engineering towards sustainable manufacturing of vehicles using Nb and Mo alloyed high performance steels , 2013 .

[104]  Ahmed Hadj Kacem,et al.  Failure prediction in the hole-flanging process of aluminium alloys , 2013 .

[105]  Hoon Huh,et al.  New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals , 2012 .

[106]  David A. Surovik,et al.  On the path-dependence of the fracture locus in ductile materials - Analysis , 2012 .

[107]  Pierre-Olivier Bouchard,et al.  An anisotropic mesh adaptation strategy for damage and failure in ductile materials , 2012 .

[108]  A. E. Tekkaya,et al.  A combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steel , 2012 .

[109]  J. Leblond,et al.  A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—I: Limit-analysis of some representative cell , 2012 .

[110]  Mgd Marc Geers,et al.  Author ' s personal copy Identification of the continuum damage parameter : An experimental challenge in modeling damage evolution , 2012 .

[111]  S. Lynch Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach , 2011 .

[112]  Ning Ma,et al.  A modified damage model for advanced high strength steel sheets , 2011 .

[113]  Michael Brünig,et al.  Simulation of damage evolution in ductile metals undergoing dynamic loading conditions , 2011 .

[114]  Pierre-Olivier Bouchard,et al.  An enhanced Lemaitre model formulation for materials processing damage computation , 2011 .

[115]  Young Hoon Moon,et al.  Internal void closure during the forging of large cast ingots using a simulation approach , 2011 .

[116]  J. Lebrun,et al.  Development of a Microscopic Damage Model for Low Stress Triaxiality , 2011 .

[117]  Stefania Bruschi,et al.  Ductile fracture prediction in cold forging process chains , 2011 .

[118]  Dierk Raabe,et al.  Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging , 2011 .

[119]  Tomasz Wierzbicki,et al.  Prediction of shear-induced fracture in sheet metal forming , 2010 .

[120]  Jpm Johan Hoefnagels,et al.  Indentation-based damage quantification revisited , 2010 .

[121]  A. Tekkaya,et al.  Finite deformation plasticity coupled with isotropic damage: Formulation in principal axes and applications , 2010 .

[122]  Leo Kestens,et al.  Void initiation at TiN precipitates in IF steels during tensile deformation , 2010 .

[123]  Jacques Besson,et al.  Continuum Models of Ductile Fracture: A Review , 2010 .

[124]  J. Leblond,et al.  Ductile Fracture by Void Growth to Coalescence , 2010 .

[125]  S. Zinkle,et al.  Structural materials for fission & fusion energy , 2009 .

[126]  R. Lapovok,et al.  A damage accumulation model for complex strain paths: Prediction of ductile failure in metals , 2009 .

[127]  Mgd Marc Geers,et al.  Experimental analysis of strain path dependent ductile damage mechanics and forming limits , 2009 .

[128]  Mgd Marc Geers,et al.  A critical assessment of indentation-based ductile damage quantification , 2009 .

[129]  J. K. Sahu,et al.  Effect of 475 ◦ C embrittlement on the mechanical properties of duplex stainless steel , 2009 .

[130]  Stefania Bruschi,et al.  Modelling of the Mannesmann effect , 2009 .

[131]  E. Maire,et al.  Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography , 2008 .

[132]  Brian D. Wirth,et al.  Recent Developments in Irradiation-Resistant Steels , 2008 .

[133]  Arnaud Weck,et al.  Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials , 2008 .

[134]  L. Xue,et al.  Constitutive modeling of void shearing effect in ductile fracture of porous materials , 2008 .

[135]  T. Wierzbicki,et al.  A new model of metal plasticity and fracture with pressure and Lode dependence , 2008 .

[136]  H. Mohrbacher Delayed Cracking in Ultra-high Strength Automotive Steels: Damage Mechanisms and Remedies by Microstructural Engineering , 2008 .

[137]  J. Hutchinson,et al.  Modification of the Gurson Model for shear failure , 2008 .

[138]  B. Buchmayr,et al.  On the interaction of ductile damage and materials softening of a Ni-base alloy during hot deformation , 2007 .

[139]  R. Fu,et al.  Effects of Undersized Inclusions on Ductile Fracture Behavior of FeNi42 Alloy in Sheet Tension , 2007 .

[140]  William A. Curtin,et al.  Crack interaction with microstructure , 2007 .

[141]  D. Wilkinson,et al.  The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy , 2007 .

[142]  Chung-Yuen Hui,et al.  Biologically inspired crack trapping for enhanced adhesion , 2007, Proceedings of the National Academy of Sciences.

[143]  Franck J. Vernerey,et al.  An interactive micro-void shear localization mechanism in high strength steels , 2007 .

[144]  F. Delannay,et al.  Micromechanics of room and high temperature fracture in 6xxx Al alloys , 2007 .

[145]  D. Matlock,et al.  Quenching and partitioning martensite-a novel steel heat treatment , 2006 .

[146]  J. M. A. César de Sá,et al.  Damage modelling in metal forming problems using an implicit non-local gradient model , 2006 .

[147]  Abel D. Santos,et al.  Finite element prediction of ductile fracture in sheet metal forming processes , 2006 .

[148]  Trevor A. Dean,et al.  A Review on Damage Mechanisms, Models and Calibration Methods under Various Deformation Conditions , 2005 .

[149]  Tomasz Wierzbicki,et al.  On the cut-off value of negative triaxiality for fracture , 2005 .

[150]  T. Wierzbicki,et al.  Calibration and evaluation of seven fracture models , 2005 .

[151]  P. Lestriez,et al.  Numerical prediction of discontinuous central bursting in axisymmetric forward extrusion by continuum damage mechanics , 2004 .

[152]  E. Maire,et al.  On the competition between particle fracture and particle decohesion in metal matrix composites , 2004 .

[153]  A. Needleman,et al.  Void nucleation by inclusion cracking , 2004 .

[154]  Laurent Babout,et al.  Damage initiation in model metallic materials: X-ray tomography and modelling , 2004 .

[155]  J. Toribio,et al.  Role of crack tip mechanics in stress corrosion cracking of high-strength steels , 2004 .

[156]  D. Chae,et al.  Damage accumulation and failure of HSLA-100 steel , 2004 .

[157]  T. Wierzbicki,et al.  On fracture locus in the equivalent strain and stress triaxiality space , 2004 .

[158]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[159]  Michael Brünig,et al.  An anisotropic ductile damage model based on irreversible thermodynamics , 2003 .

[160]  R. M. Natal Jorge,et al.  Numerical modelling of ductile plastic damage in bulk metal forming , 2003 .

[161]  Nicola Bonora,et al.  Modeling ductile damage under fully reversed cycling , 2003 .

[162]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[163]  M. Erdogan,et al.  The effect of new ferrite content on the tensile fracture behaviour of dual phase steels , 2002 .

[164]  S. D. Liu,et al.  Specifying Steel Properties and Incorporating Forming Effects in Full Vehicle Impact Simulation , 2002 .

[165]  A. Pineau,et al.  Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain , 2002 .

[166]  P. Milella,et al.  Constitutive modeling for ductile metals behavior incorporating strain rate, temperature and damage mechanics , 2001 .

[167]  D. Koss,et al.  Damage accumulation and failure of HY-100 steel , 2001 .

[168]  Mgd Marc Geers,et al.  A critical comparison of nonlocal and gradient-enhanced softening continua , 2001 .

[169]  Ridha Hambli,et al.  Finite element simulation of fine blanking processes using a pressure-dependent damage model , 2001 .

[170]  Jay R. Lund,et al.  LEONARDO DA VINCI'S TENSILE STRENGTH TESTS: IMPLICATIONS FOR THE DISCOVERY OF ENGINEERING MECHANICS , 2001 .

[171]  F. Delannay,et al.  On the role of martensitic transformation on damage and cracking resistance in trip-assisted multiphase steels , 2001 .

[172]  G. A. Webster,et al.  Residual stress distributions and their influence on fatigue lifetimes , 2001 .

[173]  E. Ahmad,et al.  Effect of microvoid formation on the tensile properties of dual-phase steel , 2000 .

[174]  Milan Jirásek,et al.  Nonlocal models for damage and fracture: Comparison of approaches , 1998 .

[175]  Jean-Baptiste Leblond,et al.  Recent extensions of Gurson's model for porous ductile metals , 1997 .

[176]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[177]  Paulo A.F. Martins,et al.  Fracture predicting in bulk metal forming , 1996 .

[178]  Fabrizio Micari,et al.  Central Bursting Defects in Drawing and Extrusion: Numerical and Ultrasonic Evaluation , 1993 .

[179]  C. L. Chow,et al.  A model of continuum damage mechanics for fatigue failure , 1991, International Journal of Fracture.

[180]  C. Laird,et al.  Faceted fatigue fracture and its relation to the crystallographic slip systems in Cu-16 at. Pct al single crystals , 1991 .

[181]  A. Gurson Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction , 1988 .

[182]  G. Rousselier,et al.  Ductile fracture models and their potential in local approach of fracture , 1987 .

[183]  C. L. Chow,et al.  An anisotropic theory of continuum damage mechanics for ductile fracture , 1987 .

[184]  Jean Lemaitre,et al.  Local approach of fracture , 1986 .

[185]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[186]  F. Mudry,et al.  Experimental study of cavity growth in ductile rupture , 1985 .

[187]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[188]  K. Lange,et al.  Effect of Process Parameters in Metalforming on Fatigue Behaviour , 1985 .

[189]  A. S. Nadkarni,et al.  On the void growth in C-Mn structural steel during plastic deformation , 1984 .

[190]  Jean-Louis Chaboche,et al.  Anisotropic creep damage in the framework of continuum damage mechanics , 1984 .

[191]  B. Mandelbrot,et al.  Fractal character of fracture surfaces of metals , 1984, Nature.

[192]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[193]  I. Tamura,et al.  Mechanical Behavior of Steels Consisting of Two Ductile Phases , 1982 .

[194]  A. Needleman,et al.  Void Nucleation Effects in Biaxially Stretched Sheets , 1980 .

[195]  S. Shima,et al.  Criteria for ductile fracture and their applications , 1980 .

[196]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[197]  J. Im,et al.  Cavity formation from inclusions in ductile fracture , 1975 .

[198]  T. B. Cox,et al.  An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels , 1974, Metallurgical and Materials Transactions B.

[199]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[200]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[201]  B. I. Edelson,et al.  THE EFFECT OF SECOND PHASES ON THE MECHANICAL PROPERTIES OF ALLOYS. Technical Report No. 2 on AN INVESTIGATION OF THE FRACTURE OF METALS , 1959 .

[202]  Alfred M. Freudenthal,et al.  The Mathematical Theories of the Inelastic Continuum , 1958 .

[203]  N. Petch The fracture of metals , 1954 .

[204]  J. Lowjr Fracture of Metals , 1951, Nature.

[205]  P. W. Bridgman Effects of High Hydrostatic Pressure on the Plastic Properties of Metals , 1945 .

[206]  W. Lode,et al.  Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel , 1926 .