A Correspondence between Balanced Varieties and Inverse Monoids
暂无分享,去创建一个
[1] Mark V. Lawson. E*-UNITARY INVERSE SEMIGROUPS , 2002 .
[2] M. Lawson. Inverse Semigroups, the Theory of Partial Symmetries , 1998 .
[3] K. S. Brown. The homology of Richard Thompson's group F , 2004, math/0411347.
[4] Jean-Camille Birget. The Groups of Richard Thompson and Complexity , 2004, Int. J. Algebra Comput..
[5] M. Lawson. The Structure of 0-E-unitary inverse semigroups I: the monoid case , 1999, Proceedings of the Edinburgh Mathematical Society.
[6] John Meakin,et al. Congruences on free monoids and submonoids of polycyclic monoids , 1993 .
[7] Patrick Dehornoy,et al. Braids and self-distributivity , 2000 .
[8] Benjamin Steinberg. The uniform word problem for groups and finite Rees quotients of E-unitary inverse semigroups , 2003 .
[9] Patrick Dehornoy. The structure group for the associativity identity , 1996 .
[10] M. Lawson. Constructing inverse semigroups from category actions , 1999 .
[11] Geometric presentations for Thompson's groups , 2004, math/0407096.
[12] Michael Barr,et al. Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.
[13] Tobias Nipkow,et al. Term rewriting and all that , 1998 .
[14] Desmond Fearnley-Sander,et al. Universal Algebra , 1982 .
[15] Samson Abramsky,et al. A Structural Approach to Reversible Computation , 2005, Theor. Comput. Sci..
[16] George Gratzer,et al. Universal Algebra , 1979 .
[17] Mark V. Lawson,et al. Partial Actions of Groups , 2004, Int. J. Algebra Comput..
[18] Patrick Dehornoy. STRUCTURAL MONOIDS ASSOCIATED TO EQUATIONAL VARIETIES , 1993 .
[19] Elizabeth Scott. A construction which can be used to produce finitely presented infinite simple groups , 1984 .
[20] J. Girard. Geometry of interaction III: accommodating the additives , 1995 .
[21] A. C. Ehresmann,et al. CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES , 2008 .