Mechanisms of human inherited epilepsies

It is just over a decade since the discovery of the first human epilepsy associated ion channel gene mutation. Since then mutations in at least 25 different genes have been described, although the strength of the evidence for these genes having a pathogenic role in epilepsy varies. These discoveries are allowing us to gradually begin to unravel the molecular basis of this complex disease. In the epilepsies, virtually all the established genes code for ion channel subunits. This has led to the concept that the idiopathic epilepsies are a family of channelopathies. This review first introduces the epilepsy syndromes linked to mutations in the various genes. Next it collates the genetic and functional analysis of these genes. This part of the review is divided into voltage-gated channels (Na+, K+, Ca2+, Cl(-) and HCN), ligand-gated channels (nicotinic acetylcholine and GABA(A) receptors) and miscellaneous proteins. In some cases significant advances have been made in our understanding of the molecular and cellular deficits caused by mutations. However, the link between molecular deficit and clinical phenotype is still unknown. Piecing together this puzzle should allow us to understand the underlying pathology of epilepsy ultimately providing novel therapeutic strategies to complete the clinic-bench-clinic cycle.

[1]  I. Scheffer,et al.  Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. , 1997, Brain : a journal of neurology.

[2]  N. Risch,et al.  Localization of a gene for partial epilepsy to chromosome 10q , 1995, Nature Genetics.

[3]  N. Bresolin,et al.  Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC) , 2005, Neurogenetics.

[4]  S. Moshé,et al.  Malic enzyme 2 may underlie susceptibility to adolescent-onset idiopathic generalized epilepsy. , 2005, American journal of human genetics.

[5]  P. Barker,et al.  The epilepsy gene LGI1 encodes a secreted glycoprotein that binds to the cell surface. , 2006, Human molecular genetics.

[6]  G. Cirillo,et al.  Benign familial neonatal convulsions (BFNC) resulting from mutation of the KCNQ2 voltage sensor , 2000, European Journal of Human Genetics.

[7]  M. Schwake,et al.  Surface Expression and Single Channel Properties of KCNQ2/KCNQ3, M-type K+ Channels Involved in Epilepsy* , 2000, The Journal of Biological Chemistry.

[8]  A. L. Goldin,et al.  An Epilepsy Mutation in the Sodium Channel SCN1A That Decreases Channel Excitability , 2006, The Journal of Neuroscience.

[9]  E. Perez-Reyes,et al.  Functional Characterization and Neuronal Modeling of the Effects of Childhood Absence Epilepsy Variants of CACNA1H, a T-Type Calcium Channel , 2005, The Journal of Neuroscience.

[10]  I. Módy,et al.  Activation of GABAA Receptors: Views from Outside the Synaptic Cleft , 2007, Neuron.

[11]  C. Marsden,et al.  Autosomal dominant nocturnal frontal lobe epilepsy. A distinctive clinical disorder. , 1995, Brain : a journal of neurology.

[12]  B. Aublet,et al.  Survey of Seizure Disorders in the French Southwest. I. Incidence of Epileptic Syndromes , 1990, Epilepsia.

[13]  C. Mahaffey,et al.  The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit , 1998, Nature Genetics.

[14]  Jianmin Cui,et al.  Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder , 2005, Nature Genetics.

[15]  C. Marsden,et al.  Autosomal dominant frontal epilepsy misdiagnosed as sleep disorder , 1994, The Lancet.

[16]  L. Lagae,et al.  A novel GABRG2 mutation associated with febrile seizures , 2006, Neurology.

[17]  P. Lory,et al.  The I–II Loop Controls Plasma Membrane Expression and Gating of Cav3.2 T-Type Ca2+ Channels: A Paradigm for Childhood Absence Epilepsy Mutations , 2007, The Journal of Neuroscience.

[18]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[19]  R. Sprengel,et al.  Developmental impact of a familial GABAA receptor epilepsy mutation , 2008, Annals of neurology.

[20]  Dirk Isbrandt,et al.  Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior , 2005, Nature Neuroscience.

[21]  G. Rouleau,et al.  Functional characterization of the D188V mutation in neuronal voltage-gated sodium channel causing generalized epilepsy with febrile seizures plus (GEFS) , 2003, Epilepsy Research.

[22]  Steven Petrou,et al.  SCN1A mutations and epilepsy , 2005, Human mutation.

[23]  S. Franceschetti,et al.  Modulatory Proteins Can Rescue a Trafficking Defective Epileptogenic Nav1.1 Na+ Channel Mutant , 2007, The Journal of Neuroscience.

[24]  S. Berkovic,et al.  Febrile seizures: traffic slows in the heat. , 2006, Trends in molecular medicine.

[25]  A. Ballabio,et al.  The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy , 2000, Nature Genetics.

[26]  I. Scheffer,et al.  The spectrum of SCN1A-related infantile epileptic encephalopathies. , 2007, Brain : a journal of neurology.

[27]  E. Bertini,et al.  Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy , 2003, Neurology.

[28]  R. Macdonald,et al.  δ Subunit Susceptibility Variants E177A and R220H Associated with Complex Epilepsy Alter Channel Gating and Surface Expression of α4β2δ GABAA Receptors , 2006, The Journal of Neuroscience.

[29]  A. George,et al.  Molecular Basis of an Inherited Epilepsy , 2002, Neuron.

[30]  K. Rhodes,et al.  Experimental Localization of Kv1 Family Voltage-Gated K+ Channel α and β Subunits in Rat Hippocampal Formation , 2001, The Journal of Neuroscience.

[31]  C. Bladen,et al.  Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy , 2005, Annals of neurology.

[32]  C. McBain,et al.  The hyperpolarization‐activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens‐alveus interneurones. , 1996, The Journal of physiology.

[33]  M Montal,et al.  A missense mutation of the Na+ channel αII subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  H. Oguni,et al.  Severe myoclonic epilepsy in infancy: Dravet syndrome. , 2005, Advances in neurology.

[35]  Jerome Engel,et al.  A Proposed Diagnostic Scheme for People with Epileptic Seizures and with Epilepsy: Report of the ILAE Task Force on Classification and Terminology , 2001, Epilepsia.

[36]  Hiroyuki Miyamoto,et al.  Nav1.1 Localizes to Axons of Parvalbumin-Positive Inhibitory Interneurons: A Circuit Basis for Epileptic Seizures in Mice Carrying an Scn1a Gene Mutation , 2007, The Journal of Neuroscience.

[37]  M. Meisler,et al.  Mutation of the Ca2+ Channel β Subunit Gene Cchb4 Is Associated with Ataxia and Seizures in the Lethargic (lh) Mouse , 1997, Cell.

[38]  Mark Leppert,et al.  A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns , 1998, Nature Genetics.

[39]  M. Emerit,et al.  A γ2(R43Q) Mutation, Linked to Epilepsy in Humans, Alters GABAA Receptor Assembly and Modifies Subunit Composition on the Cell Surface* , 2006, Journal of Biological Chemistry.

[40]  R. Baloh,et al.  Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures , 2005, Neurology.

[41]  Istvan Mody,et al.  The multifaceted role of inhibition in epilepsy: seizure-genesis through excessive GABAergic inhibition in autosomal dominant nocturnal frontal lobe epilepsy , 2008, Current opinion in neurology.

[42]  Michel Baulac,et al.  First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene , 2001, Nature Genetics.

[43]  S. Haider,et al.  Functional characterisation of missense variations in the Kir4.1 potassium channel (KCNJ10) associated with seizure susceptibility. , 2005, Brain research. Molecular brain research.

[44]  T. Zwingman,et al.  Rocker Is a New Variant of the Voltage-Dependent Calcium Channel Gene Cacna1a , 2001, The Journal of Neuroscience.

[45]  D. Bertrand,et al.  The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits , 2005, Neurobiology of Disease.

[46]  C. van Broeckhoven,et al.  A deletion in SCN1B is associated with febrile seizures and early-onset absence epilepsy , 2003, Neurology.

[47]  E. Perez-Reyes Molecular physiology of low-voltage-activated t-type calcium channels. , 2003, Physiological reviews.

[48]  S. Harik,et al.  Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. , 1991, The New England journal of medicine.

[49]  A. L. Goldin,et al.  Functional Effects of Two Voltage-Gated Sodium Channel Mutations That Cause Generalized Epilepsy with Febrile Seizures Plus Type 2 , 2001, The Journal of Neuroscience.

[50]  Zhijian Yao,et al.  Association between genetic variation of CACNA1H and childhood absence epilepsy , 2003, Annals of neurology.

[51]  B S Brown,et al.  KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. , 1998, Science.

[52]  D. Hanck,et al.  A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. , 2006, Human molecular genetics.

[53]  Ivan Soltesz,et al.  Increased neuronal firing in computer simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus. , 2004 .

[54]  C. Sommer,et al.  Immunohistochemical analysis of KCNQ2 potassium channels in adult and developing mouse brain , 2006, Brain Research.

[55]  D. Johnston,et al.  Active dendrites reduce location-dependent variability of synaptic input trains. , 1997, Journal of neurophysiology.

[56]  A. Heils,et al.  Evaluation of CACNA1H in European patients with childhood absence epilepsy , 2006, Epilepsy Research.

[57]  M. Leppert,et al.  KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. , 2003, Brain : a journal of neurology.

[58]  Philip J. Holt,et al.  Subthreshold changes of voltage-dependent activation of the KV7.2 channel in neonatal epilepsy , 2006, Neurobiology of Disease.

[59]  Ying-Hui Fu,et al.  A Novel Gene Causing a Mendelian Audiogenic Mouse Epilepsy , 2001, Neuron.

[60]  M. de Curtis,et al.  Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  G. Lagoumintzis,et al.  Muscle and neuronal nicotinic acetylcholine receptors , 2007 .

[62]  Michael Litt,et al.  Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1 , 1994, Nature Genetics.

[63]  Tristan D. McClure-Begley,et al.  Nicotine-Induced Dystonic Arousal Complex in a Mouse Line Harboring a Human Autosomal-Dominant Nocturnal Frontal Lobe Epilepsy Mutation , 2007, The Journal of Neuroscience.

[64]  F. Bretschneider,et al.  A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions , 1999, Annals of neurology.

[65]  I. Scheffer,et al.  Sodium-channel defects in benign familial neonatal-infantile seizures , 2002, The Lancet.

[66]  H. Adesnik,et al.  Epilepsy-Related Ligand/Receptor Complex LGI1 and ADAM22 Regulate Synaptic Transmission , 2006, Science.

[67]  H. Lerche,et al.  Neutralization of a negative charge in the S1–S2 region of the KV7.2 (KCNQ2) channel affects voltage‐dependent activation in neonatal epilepsy , 2008, The Journal of physiology.

[68]  C. Sommer,et al.  Immunohistochemical analysis of KCNQ3 potassium channels in mouse brain , 2006, Neuroscience Letters.

[69]  Hao Wang,et al.  Deletion of the KV1.1 Potassium Channel Causes Epilepsy in Mice , 1998, Neuron.

[70]  Luigi Ferini-Strambi,et al.  Autosomal dominant nocturnal frontal lobe epilepsy , 2004, Journal of Neurology.

[71]  M. Sperling,et al.  Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility , 2004, Epilepsy Research.

[72]  Istvan Mody,et al.  Distinguishing Between GABAA Receptors Responsible for Tonic and Phasic Conductances , 2001, Neurochemical Research.

[73]  E. Purisima,et al.  Alterations in the alpha2 isoform of Na,K-ATPase associated with familial hemiplegic migraine type 2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  I. Scheffer,et al.  Benign familial neonatal‐infantile seizures: Characterization of a new sodium channelopathy , 2004, Annals of neurology.

[75]  C. Reid,et al.  Increased thalamic inhibition in the absence seizure prone DBA/2J mouse , 2008, Epilepsia.

[76]  Daesoo Kim,et al.  Lack of the Burst Firing of Thalamocortical Relay Neurons and Resistance to Absence Seizures in Mice Lacking α1G T-Type Ca2+ Channels , 2001, Neuron.

[77]  I. Scheffer,et al.  CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. , 2001, American journal of human genetics.

[78]  D. A. Brown,et al.  Properties of single M‐type KCNQ2/KCNQ3 potassium channels expressed in mammalian cells , 2001, The Journal of physiology.

[79]  L. Lagae,et al.  De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. , 2001, American journal of human genetics.

[80]  L. Isom,et al.  Sodium Channel β1 Subunits Promote Neurite Outgrowth in Cerebellar Granule Neurons* , 2004, Journal of Biological Chemistry.

[81]  E. Wirrell,et al.  Linkage and mutational analysis of CLCN2 in childhood absence epilepsy , 2007, Epilepsy Research.

[82]  Douglas C. Wallace,et al.  Radicals r'aging , 1998, Nature Genetics.

[83]  I. Scheffer,et al.  Phenotypic Comparison of Two Scottish Families with Mutations in Different Genes Causing Autosomal Dominant Nocturnal Frontal Lobe Epilepsy , 2003, Epilepsia.

[84]  F. Mottaghy,et al.  GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. , 2008, The Journal of clinical investigation.

[85]  M. T. Medina,et al.  Mutations in EFHC1 cause juvenile myoclonic epilepsy , 2004, Nature Genetics.

[86]  Katsuhiro Kobayashi,et al.  A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy , 1999, Neurology.

[87]  C. van Broeckhoven,et al.  De novo KCNQ2 mutations in patients with benign neonatal seizures , 2004, Neurology.

[88]  Istvan Mody,et al.  Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy , 2006, Proceedings of the National Academy of Sciences.

[89]  I. Scheffer,et al.  SCN2A Mutations and Benign Familial Neonatal‐Infantile Seizures: The Phenotypic Spectrum , 2007, Epilepsia.

[90]  S. Berkovic,et al.  A potassium channel mutation in neonatal human epilepsy. , 1998, Science.

[91]  J. Golding,et al.  Febrile convulsions in a national cohort followed up from birth. I--Prevalence and recurrence in the first five years of life. , 1985, British medical journal.

[92]  M. Alldred,et al.  Distinct γ2 Subunit Domains Mediate Clustering and Synaptic Function of Postsynaptic GABAA Receptors and Gephyrin , 2005, The Journal of Neuroscience.

[93]  Steven Petrou,et al.  Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation [γ2(R43Q)] found in human epilepsy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[94]  Melinda S. Martin,et al.  The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. , 2007, Human molecular genetics.

[95]  S. Horvath,et al.  Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies , 2003, Nature Genetics.

[96]  L. Annunziato,et al.  Decreased Subunit Stability as a Novel Mechanism for Potassium Current Impairment by a KCNQ2 C Terminus Mutation Causing Benign Familial Neonatal Convulsions* , 2006, Journal of Biological Chemistry.

[97]  A. Mitsudome,et al.  A novel mutation of KCNQ3 (c.925T→C) in a Japanese family with benign familial neonatal convulsions , 2000, Annals of neurology.

[98]  J. Hottenga,et al.  Novel mutations in the Na+, K+‐ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions , 2003, Annals of neurology.

[99]  C. Broeckhoven,et al.  Genome-wide linkage of febrile seizures and epilepsy to the FEB4 locus at 5q14.3-q23.1 and no MASS1 mutation , 2005, Human Genetics.

[100]  I. Scheffer,et al.  De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy: a retrospective study , 2006, The Lancet Neurology.

[101]  C. Keller,et al.  The γ2 Subunit of GABAA Receptors Is a Substrate for Palmitoylation by GODZ , 2004, The Journal of Neuroscience.

[102]  J. Schwarz,et al.  Effects of TRH on heteromeric rat erg1a/1b K+ channels are dominated by the rerg1b subunit , 2006, The Journal of physiology.

[103]  T J Sejnowski,et al.  In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[104]  E. Oka,et al.  Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. , 2002, Biochemical and biophysical research communications.

[105]  A. Depaulis,et al.  Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. , 2000, Brain research. Molecular brain research.

[106]  L. Annunziato,et al.  Atypical Gating Of M-Type Potassium Channels Conferred by Mutations in Uncharged Residues in the S4 Region of KCNQ2 Causing Benign Familial Neonatal Convulsions , 2007, The Journal of Neuroscience.

[107]  T. Mayer,et al.  Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. , 2000, American journal of human genetics.

[108]  J. Rho,et al.  Evidence of altered inhibition in layer V pyramidal neurons from neocortex of Kcna1-null mice , 2001, Neuroscience.

[109]  Michael G Hanna,et al.  Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel , 2001, The Lancet.

[110]  H. Lerche,et al.  Molecular analysis of the A322D mutation in the GABAA receptor α1‐subunit causing juvenile myoclonic epilepsy , 2005, The European journal of neuroscience.

[111]  D. Bertrand,et al.  How Mutations in the nAChRs Can Cause ADNFLE Epilepsy , 2002, Epilepsia.

[112]  L. Ferini-Strambi,et al.  Two new putative susceptibility loci for ADNFLE , 2005, Brain Research Bulletin.

[113]  U. Winzer-Serhan,et al.  Postnatal expression of α2 nicotinic acetylcholine receptor subunit mRNA in developing cortex and hippocampus , 2006, Journal of Chemical Neuroanatomy.

[114]  Holger Lerche,et al.  A mutation in the GABAA receptor α1‐subunit is associated with absence epilepsy , 2006 .

[115]  I. Levitan,et al.  Calmodulin Is an Auxiliary Subunit of KCNQ2/3 Potassium Channels , 2002, The Journal of Neuroscience.

[116]  M. Pessia,et al.  An episodic ataxia type‐1 mutation in the S1 segment sensitises the hKv1.1 potassium channel to extracellular Zn2+ , 2004, FEBS letters.

[117]  Samuel F. Berkovic,et al.  Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B , 1998, Nature Genetics.

[118]  A. George,et al.  Nonfunctional SCN1A Is Common in Severe Myoclonic Epilepsy of Infancy , 2006, Epilepsia.

[119]  Stéphanie Baulac,et al.  Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 , 2000, Nature Genetics.

[120]  I. Scheffer,et al.  Human Nocturnal Frontal Lobe Epilepsy: Pharmocogenomic Profiles of Pathogenic Nicotinic Acetylcholine Receptor β-Subunit Mutations outside the Ion Channel Pore , 2008, Molecular Pharmacology.

[121]  O. Devinsky,et al.  Epilepsy-Associated Dysfunction in the Voltage-Gated Neuronal Sodium Channel SCN1A , 2003, The Journal of Neuroscience.

[122]  W. Walz Chloride/anion channels in glial cell membranes , 2002, Glia.

[123]  S. Lorenz,et al.  Supportive evidence for an allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy , 2005, Epilepsy Research.

[124]  Thomas Friedrich,et al.  A carboxy‐terminal domain determines the subunit specificity of KCNQ K+ channel assembly , 2003, EMBO reports.

[125]  M. Lazdunski,et al.  The KCNQ2 potassium channel: splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3 , 1998, FEBS letters.

[126]  P. Striano,et al.  A Novel SCN2A Mutation in Family with Benign Familial Infantile Seizures , 2006, Epilepsia.

[127]  P. Striano,et al.  Mutational Analysis of EFHC1 Gene in Italian Families with Juvenile Myoclonic Epilepsy , 2007, Epilepsia.

[128]  S. King Axonemal protofilament ribbons, DM10 domains, and the link to juvenile myoclonic epilepsy. , 2006, Cell motility and the cytoskeleton.

[129]  C. Altier,et al.  Gating Effects of Mutations in the Cav3.2 T-type Calcium Channel Associated with Childhood Absence Epilepsy* , 2004, Journal of Biological Chemistry.

[130]  Karin Dedek,et al.  Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[131]  G. Avanzini,et al.  Effects in Neocortical Neurons of Mutations of the Nav1.2 Na+ Channel causing Benign Familial Neonatal-Infantile Seizures , 2006, The Journal of Neuroscience.

[132]  K. Yamakawa,et al.  A Nonsense Mutation of the Sodium Channel Gene SCN2A in a Patient with Intractable Epilepsy and Mental Decline , 2004, The Journal of Neuroscience.

[133]  E. Albuquerque,et al.  The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. , 2004, Progress in brain research.

[134]  W. Catterall Structure and regulation of voltage-gated Ca2+ channels. , 2000, Annual review of cell and developmental biology.

[135]  Wei-Yang Lu,et al.  Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy , 2002, Nature Genetics.

[136]  C. Flores,et al.  Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. , 2004, Physiological genomics.

[137]  Uwe Runge,et al.  A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. , 2002, Archives of neurology.

[138]  H. Iwasaki,et al.  Developmental changes in KCNQ2 and KCNQ3 expression in human brain: Possible contribution to the age-dependent etiology of benign familial neonatal convulsions , 2008, Brain and Development.

[139]  S. Berkovic,et al.  Genetic Association Studies in Epilepsy: “The Truth Is Out There” , 2004, Epilepsia.

[140]  W. Frankel,et al.  A Spontaneous Mutation Involving Kcnq2 (Kv7.2) Reduces M-Current Density and Spike Frequency Adaptation in Mouse CA1 Neurons , 2006, The Journal of Neuroscience.

[141]  U. Stephani,et al.  Recurrent de novo mutations of SCN1A in severe myoclonic epilepsy of infancy. , 2006, Pediatric neurology.

[142]  E. Lander,et al.  Ducky Mouse Phenotype of Epilepsy and Ataxia Is Associated with Mutations in the Cacna2d2 Gene and Decreased Calcium Channel Current in Cerebellar Purkinje Cells , 2001, The Journal of Neuroscience.

[143]  B. Fakler,et al.  The Epilepsy-Linked Lgi1 Protein Assembles into Presynaptic Kv1 Channels and Inhibits Inactivation by Kvβ1 , 2006, Neuron.

[144]  W. Hauser,et al.  LGI1 mutations in autosomal dominant partial epilepsy with auditory features , 2004, Neurology.

[145]  A. Hoffman,et al.  Contribution of the hyperpolarization-activated current (I(h)) to membrane potential and GABA release in hippocampal interneurons. , 2001, Journal of neurophysiology.

[146]  J. Arreola,et al.  Loss of Hyperpolarization-activated Cl− Current in Salivary Acinar Cells from Clcn2 Knockout Mice* , 2002, The Journal of Biological Chemistry.

[147]  J A Peters,et al.  Guide to Receptors and Channels (GRAC), 3rd edition , 2008, British journal of pharmacology.

[148]  Massimo Mantegazza,et al.  Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy , 2006, Nature Neuroscience.

[149]  F. Ashcroft,et al.  Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[150]  L. Lagae,et al.  Microdeletions involving the SCN1A gene may be common in SCN1A‐mutation‐negative SMEI patients , 2006, Human mutation.

[151]  Yanmin Zhang,et al.  Infantile seizures and other epileptic phenotypes in a Chinese family with a missense mutation of KCNQ2 , 2006, European Journal of Pediatrics.

[152]  I. Scheffer,et al.  Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants , 2007, Annals of neurology.

[153]  David A. Williams,et al.  Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures , 2001, Nature Genetics.

[154]  R. Macdonald,et al.  The GABAA receptor α1 subunit epilepsy mutation A322D inhibits transmembrane helix formation and causes proteasomal degradation , 2007, Proceedings of the National Academy of Sciences.

[155]  Feyza Sancar,et al.  A GABAA Receptor Mutation Linked to Human Epilepsy (γ2R43Q) Impairs Cell Surface Expression of αβγ Receptors* , 2004, Journal of Biological Chemistry.

[156]  A. Spauschus,et al.  Variable K+ channel subunit dysfunction in inherited mutations of KCNA1 , 2002, The Journal of physiology.

[157]  I. Scheffer,et al.  Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction , 2004, Journal of Medical Genetics.

[158]  Helen Zhang,et al.  Two Different Mechanisms of Disinhibition Produced by GABAA Receptor Mutations Linked to Epilepsy in Humans , 2002, The Journal of Neuroscience.

[159]  Steven Petrou,et al.  GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. , 2004, Human molecular genetics.

[160]  D. Hardie,et al.  CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. , 2004, The Journal of clinical investigation.

[161]  Steven Petrou,et al.  Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. , 2002, American journal of human genetics.

[162]  R. Siebert,et al.  Mutations in the LGI1/Epitempin gene on 10q24 cause autosomal dominant lateral temporal epilepsy. , 2002, Human molecular genetics.

[163]  Amandine Duflocq,et al.  Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments , 2008, Molecular and Cellular Neuroscience.

[164]  Yukitoshi Takahashi,et al.  Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. , 2003, Brain : a journal of neurology.

[165]  N. Bresolin,et al.  A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation , 2004, Neurology.

[166]  Samuel F. Berkovic,et al.  A childhood epilepsy mutation reveals a role for developmentally regulated splicing of a sodium channel , 2007, Molecular and Cellular Neuroscience.

[167]  R. Miles,et al.  GABAA Receptor γ2 Subunit Mutations Linked to Human Epileptic Syndromes Differentially Affect Phasic and Tonic Inhibition , 2007, The Journal of Neuroscience.

[168]  B. Sutor,et al.  Neuronal nicotinic acetylcholine receptors and autosomal dominant nocturnal frontal lobe epilepsy: a critical review , 2001, Pflügers Archiv.

[169]  Edmund M. Talley,et al.  Differential Distribution of Three Members of a Gene Family Encoding Low Voltage-Activated (T-Type) Calcium Channels , 1999, The Journal of Neuroscience.

[170]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[171]  R. Kaji,et al.  KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier , 2006, The Journal of physiology.

[172]  T. Sander,et al.  Mutation analysis of the hyperpolarization-activated cyclic nucleotide-gated channels HCN1 and HCN2 in idiopathic generalized epilepsy , 2008, Neurobiology of Disease.

[173]  D. Prince,et al.  Characterization of ethosuximide reduction of low‐threshold calcium current in thalamic neurons , 1989, Annals of neurology.

[174]  Meaghan Morris,et al.  The truth is out there! , 2017, Psych-Talk.

[175]  A. Spauschus,et al.  A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. , 1999, Brain : a journal of neurology.

[176]  W. Frankel,et al.  Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2. , 2006, Human molecular genetics.

[177]  Bert Sakmann,et al.  Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy , 2007, Proceedings of the National Academy of Sciences.

[178]  Anita Lüthi,et al.  Functional stabilization of weakened thalamic pacemaker channel regulation in rat absence epilepsy , 2006, The Journal of physiology.

[179]  Ying-Hui Fu,et al.  A nonsense mutation of the MASS1 gene in a family with febrile and afebrile seizures , 2002, Annals of neurology.

[180]  C Baumgartner,et al.  Idiopathic generalized epilepsy phenotypes associated with different EFHC1 mutations , 2006, Neurology.

[181]  Takuya Murakami,et al.  Age-dependent modulation of hippocampal excitability by KCNQ-channels , 2003, Epilepsy Research.

[182]  J. Noebels,et al.  Elevated Thalamic Low-Voltage-Activated Currents Precede the Onset of Absence Epilepsy in the SNAP25-Deficient Mouse Mutant Coloboma , 2004, The Journal of Neuroscience.

[183]  H. Lester,et al.  Five ADNFLE Mutations Reduce the Ca2+ Dependence of the Mammalian α4β2 Acetylcholine Response , 2003 .

[184]  K. Xia,et al.  A novel mutation in KCNQ2 gene causes benign familial neonatal convulsions in a Chinese family , 2004, Journal of the Neurological Sciences.

[185]  W. Hauser,et al.  Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features , 2002, Nature Genetics.

[186]  G. Stuart,et al.  Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model , 2007, The Journal of physiology.

[187]  J Deisenhofer,et al.  Proteins with leucine-rich repeats. , 1995, Current opinion in structural biology.

[188]  C. Kubisch,et al.  Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy , 1998, Nature.

[189]  A. Gambardella,et al.  Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy , 2004, Neurology.

[190]  S. Scherer,et al.  KCNQ2 Is a Nodal K+ Channel , 2004, The Journal of Neuroscience.

[191]  H. Lester,et al.  Mutations Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Affect Allosteric Ca2+ Activation of the α4β2 Nicotinic Acetylcholine Receptor , 2005, Molecular Pharmacology.

[192]  G. Alcaraz,et al.  Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells , 2005, The Journal of physiology.

[193]  A. Spauschus,et al.  Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability , 2000, Annals of neurology.

[194]  I. Módy,et al.  Ovarian cycle–linked changes in GABAA receptors mediating tonic inhibition alter seizure susceptibility and anxiety , 2005, Nature Neuroscience.

[195]  J. Malhotra,et al.  Functional and Biochemical Analysis of a Sodium Channel β1 Subunit Mutation Responsible for Generalized Epilepsy with Febrile Seizures Plus Type 1 , 2002, The Journal of Neuroscience.

[196]  L. Annunziato,et al.  A novel KCNQ2 K+channel mutation in benign neonatal convulsions and centrotemporal spikes , 2003, Neurology.

[197]  S. I. Levin,et al.  A Novel Epilepsy Mutation in the Sodium Channel SCN1A Identifies a Cytoplasmic Domain for β Subunit Interaction , 2004, The Journal of Neuroscience.

[198]  C. Fletcher,et al.  Reduced Voltage Sensitivity of Activation of P/Q-Type Ca2+ Channels is Associated with the Ataxic Mouse MutationRolling Nagoya (tgrol ) , 2000, The Journal of Neuroscience.

[199]  O. Steinlein,et al.  A KCNQ2 splice site mutation causing benign neonatal convulsions in a Scottish family. , 2000, Neuropediatrics.

[200]  R. Macdonald,et al.  Why Does Fever Trigger Febrile Seizures? GABAA Receptor γ2 Subunit Mutations Associated with Idiopathic Generalized Epilepsies Have Temperature-Dependent Trafficking Deficiencies , 2006, The Journal of Neuroscience.

[201]  M. Schweizer,et al.  Leukoencephalopathy upon Disruption of the Chloride Channel ClC-2 , 2007, The Journal of Neuroscience.

[202]  I. Scheffer,et al.  Navigating the channels and beyond: unravelling the genetics of the epilepsies , 2008, The Lancet Neurology.

[203]  T. Baram,et al.  The multiple personalities of h-channels , 2003, Trends in Neurosciences.

[204]  Robert Brenner,et al.  BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures , 2005, Nature Neuroscience.

[205]  W. van Paesschen,et al.  Epilepsy as part of the phenotype associated with ATP1A2 mutations , 2008, Epilepsia.

[206]  W. van Paesschen,et al.  Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1 , 2008, Brain : a journal of neurology.

[207]  Alfred L. George,et al.  Impaired Inactivation Gate Stabilization Predicts Increased Persistent Current for an Epilepsy-Associated SCN1A Mutation , 2006, The Journal of Neuroscience.

[208]  Haiyan Tang,et al.  The epilepsy mutation, γ2(R43Q) disrupts a highly conserved inter-subunit contact site, perturbing the biogenesis of GABAA receptors , 2005, Molecular and Cellular Neuroscience.

[209]  Leonid Kruglyak,et al.  The road to genome-wide association studies , 2008, Nature Reviews Genetics.

[210]  R. Macdonald,et al.  The GABAA Receptor γ2 Subunit R43Q Mutation Linked to Childhood Absence Epilepsy and Febrile Seizures Causes Retention of α1β2γ2S Receptors in the Endoplasmic Reticulum , 2004, The Journal of Neuroscience.

[211]  D. Kullmann,et al.  Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia , 2004 .

[212]  D Bertrand,et al.  An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. , 1997, Human molecular genetics.

[213]  Jing Qian,et al.  Masking epilepsy by combining two epilepsy genes , 2007, Nature Neuroscience.

[214]  E. Honoré,et al.  Properties and modulation of mammalian 2P domain K+ channels , 2001, Trends in Neurosciences.

[215]  Samuel F. Berkovic,et al.  Human epilepsies: interaction of genetic and acquired factors , 2006, Trends in Neurosciences.

[216]  I. Scheffer,et al.  A new molecular mechanism for severe myoclonic epilepsy of infancy: Exonic deletions in SCN1A , 2006, Neurology.

[217]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[218]  P. Striano,et al.  Cryptic chromosome deletions involving SCN1A in severe myoclonic epilepsy of infancy , 2006, Neurology.

[219]  D. Goldstein,et al.  Failure to replicate previously reported genetic associations with sporadic temporal lobe epilepsy: where to from here? , 2005, Brain : a journal of neurology.

[220]  C. Cianchetti,et al.  Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. , 2006, American journal of human genetics.

[221]  I. Scheffer,et al.  Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. , 2006, Brain : a journal of neurology.

[222]  I. Scheffer,et al.  Generalized epilepsy with febrile seizures plus–associated sodium channel β1 subunit mutations severely reduce beta subunit–mediated modulation of sodium channel function , 2007, Neuroscience.

[223]  A. Delgado-Escueta,et al.  EFHC1, a protein mutated in juvenile myoclonic epilepsy, associates with the mitotic spindle through its N-terminus. , 2006, Experimental cell research.

[224]  C. Gotti,et al.  Human neuronal nicotinic receptors , 1997, Progress in Neurobiology.

[225]  I. Scheffer,et al.  A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy , 1995, Nature Genetics.

[226]  L. Isom The role of sodium channels in cell adhesion. , 2002, Frontiers in bioscience : a journal and virtual library.

[227]  William A. Catterall,et al.  Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons , 1989, Neuron.

[228]  I. Scheffer,et al.  Genetic variation of CACNA1H in idiopathic generalized epilepsy , 2004, Annals of neurology.

[229]  V. Crunelli,et al.  Childhood absence epilepsy: Genes, channels, neurons and networks , 2002, Nature Reviews Neuroscience.

[230]  J. Bekkers,et al.  N- and P/Q-Type Ca2+ Channels Mediate Transmitter Release with a Similar Cooperativity at Rat Hippocampal Autapses , 1998, The Journal of Neuroscience.

[231]  K. Shimomura,et al.  A novel mutation causing DEND syndrome , 2007, Neurology.

[232]  Hans-Christian Pape,et al.  Impaired Regulation of Thalamic Pacemaker Channels through an Imbalance of Subunit Expression in Absence Epilepsy , 2005, The Journal of Neuroscience.

[233]  E. A. Thomas,et al.  Computational analysis of the R85C and R85H epilepsy mutations in Na+ channel β1 subunits , 2007, Neuroscience.

[234]  Lori L. Isom,et al.  Mice Lacking Sodium Channel β1 Subunits Display Defects in Neuronal Excitability, Sodium Channel Expression, and Nodal Architecture , 2004, The Journal of Neuroscience.

[235]  J. Crabbe,et al.  A mouse model of episodic ataxia type-1 , 2003, Nature Neuroscience.

[236]  S. Lorenz,et al.  Association Analysis of Malic Enzyme 2 Gene Polymorphisms with Idiopathic Generalized Epilepsy , 2005, Epilepsia.