Evaluating system reliability using linear-exponential distribution function

Safety is a main criterion to design every system. Among various theories, which are applied to improve system safety, reliability theory is known as a powerful tool to reach higher safety levels in system design. In this paper, a compound of series and parallel systems is considered for reliability improvement. This system includes three items that two items are connected in parallel and their compound item is connected to the third item in series. It's assumed that the items are independent and their longevity follows linear-exponential distribution function. Reliability function of the mentioned system is formulated using linear-exponential distribution function. Then, three improvement methods will be applied to enhance system reliability. In each method, different sets of items will be considered for improvement and their reliability functions will be reformulated. A data analysis will be done in order to compare different improvement methods and a conclusion will be made based on the analyzed data.

[1]  Attila Csenki,et al.  On continuous lifetime distributions with polynomial failure rate with an application in reliability , 2011, Reliab. Eng. Syst. Saf..

[2]  Ammar M. Sarhan Reliability equivalence with a basic series/parallel system , 2002, Appl. Math. Comput..

[3]  Y. H. Abdelkader,et al.  Reliability Equivalence of Independent Non-identical Parallel and Series Systems , 2012 .

[4]  A. Mustafa,et al.  Reliability equivalence factors of a system with mixture of n independent and non-identical lifetimes with delay time , 2014 .

[5]  G. Ezzati,et al.  Solving reliability analysis problems in the polar space , 2014 .

[6]  Rudolph Frederick Stapelberg,et al.  Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design , 2009 .

[7]  Exponential-Gamma Additive Failure Rate Model , 2013 .

[8]  Kathrin Abendroth Handbook Of Reliability Availability Maintainability And Safety In Engineering Design , 2016 .

[9]  Alessandro Birolini Reliability Engineering: Theory and Practice , 1999 .

[10]  Roy Billinton,et al.  Reliability evaluation of engineering systems : concepts and techniques , 1992 .

[11]  Mohamed A. W. Mahmoud,et al.  The generalized linear exponential distribution , 2010 .

[12]  G. Ezzati,et al.  A new reliability analysis method based on the conjugate gradient direction , 2015 .

[13]  Ammar M. Sarhan,et al.  Exponentiated modified Weibull extension distribution , 2013, Reliab. Eng. Syst. Saf..

[14]  Weiming Ke,et al.  Probability, Statistics, and Reliability for Engineers and Scientists , 2008, Technometrics.

[15]  S. Rahman Reliability Engineering and System Safety , 2011 .

[16]  Ammar M. Sarhan,et al.  Exponentiated generalized linear exponential distribution , 2013 .

[17]  Juliane Freud,et al.  Reliability Evaluation Of Engineering Systems , 2016 .

[18]  Christina Berger,et al.  Application of different concepts for fatigue design of welded joints in rotating components in mechanical engineering , 2012 .

[20]  Gregory Levitin,et al.  Reliability of Series-Parallel Systems With Random Failure Propagation Time , 2013, IEEE Transactions on Reliability.

[21]  Changsong Deng,et al.  Statistics and Probability Letters , 2011 .

[22]  P. Ahi,et al.  A survivability model for ejection of green compacts in powder metallurgy technology , 2012 .

[23]  Harold Ascher Different insights for improving part and system reliability obtained from exactly same DFOM "failure numbers" , 2007, Reliab. Eng. Syst. Saf..