A Porous Zirconium-Based Metal-Organic Framework with the Potential for the Separation of Butene Isomers.

By using a novel C3 -symmetrical tricarboxylate (4,4',4''-benzene-1,3,5-triyl-1,1',1''-trinaphthoic acid), a novel zirconium-based metal-organic framework ZJNU-30 was solvothermally synthesized and structurally characterized. Single-crystal X-ray structural analyses show that ZJNU-30 consists of Zr6 -based nodes connected by the organic linkers to form a (3,8)-connected network featuring the coexistence of two different polyhedral cages: octahedral and cuboctahedral cages with the dimensions of about 14 and 22 Å, respectively. Remarkably, ZJNU-30 is very stable when exposed to air for one month. More importantly, with a moderately high surface area, hierarchical pore structures, and an aromatic-rich pore surface in the framework, ZJNU-30, after activation, exhibits a promising potential for the selective adsorptive separation of industrially important butene isomers consisting of cis-2-butene, trans-2-butene, 1-butene, and iso-butene at ambient temperature. This separation was established exclusively by gas adsorption isotherms and simulated breakthrough experiments. To the best of our knowledge, this is the first study investigating porous metal-organic frameworks for butene-isomer separation.

[1]  Shyam Biswas,et al.  A thiadiazole-functionalized Zr(IV)-based metal–organic framework as a highly fluorescent probe for the selective detection of picric acid , 2016 .

[2]  H. Du,et al.  Highly Stable Mesoporous Zirconium Porphyrinic Frameworks with Distinct Flexibility. , 2016, Chemistry.

[3]  Hong-Cai Zhou,et al.  Zr-based metal-organic frameworks: design, synthesis, structure, and applications. , 2016, Chemical Society reviews.

[4]  Omar M. Yaghi,et al.  The role of metal–organic frameworks in a carbon-neutral energy cycle , 2016, Nature Energy.

[5]  H. Cui,et al.  A stable and porous iridium(III)-porphyrin metal–organic framework: synthesis, structure and catalysis , 2016 .

[6]  X. You,et al.  Finely tuning MOFs towards high-performance post-combustion CO2 capture materials. , 2016, Chemical communications.

[7]  R. Zou,et al.  A luminescent Zr-based metal–organic framework for sensing/capture of nitrobenzene and high-pressure separation of CH4/C2H6 , 2015 .

[8]  Susumu Kitagawa Poröse Materialien und das Gaszeitalter , 2015 .

[9]  S. Kitagawa Porous Materials and the Age of Gas. , 2015, Angewandte Chemie.

[10]  Jie Su,et al.  Piezofluorochromic Metal-Organic Framework: A Microscissor Lift. , 2015, Journal of the American Chemical Society.

[11]  R. Krishna Methodologies for evaluation of metal–organic frameworks in separation applications , 2015 .

[12]  Daqiang Yuan,et al.  Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal-Organic Framework via a "Click" Reaction. , 2015, Inorganic chemistry.

[13]  Zhengjie Li,et al.  An ultrastable Zr metal–organic framework with a thiophene-type ligand containing methyl groups , 2015 .

[14]  Yan Xu,et al.  A Zr metal-organic framework based on tetrakis(4-carboxyphenyl) silane and factors affecting the hydrothermal stability of Zr-MOFs. , 2015, Dalton transactions.

[15]  S. Okajima,et al.  Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. , 2015, Journal of the American Chemical Society.

[16]  S. Kaskel,et al.  Tetrazine functionalized zirconium MOF as an optical sensor for oxidizing gases. , 2015, Chemical communications.

[17]  R. Krishna Separating mixtures by exploiting molecular packing effects in microporous materials. , 2015, Physical chemistry chemical physics : PCCP.

[18]  Gary J. Miller,et al.  Chemical and Structural Stability of Zirconium-based Metal–Organic Frameworks with Large Three-Dimensional Pores by Linker Engineering , 2014, Angewandte Chemie.

[19]  Shuhong Yu,et al.  A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity. , 2014, Journal of the American Chemical Society.

[20]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society reviews.

[21]  Banglin Chen,et al.  Multifunctional metal-organic frameworks constructed from meta-benzenedicarboxylate units. , 2014, Chemical Society reviews.

[22]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[23]  Daofeng Sun,et al.  Porous zirconium metal-organic framework constructed from 2D → 3D interpenetration based on a 3,6-connected kgd net. , 2014, Inorganic chemistry.

[24]  Lei Xing,et al.  Synergistic Assembly of Heavy Metal Clusters and Luminescent Organic Bridging Ligands in Metal–Organic Frameworks for Highly Efficient X-ray Scintillation , 2014, Journal of the American Chemical Society.

[25]  Seth M. Cohen,et al.  A robust, catalytic metal-organic framework with open 2,2'-bipyridine sites. , 2014, Chemical communications.

[26]  Wenbin Lin,et al.  Privileged phosphine-based metal-organic frameworks for broad-scope asymmetric catalysis. , 2014, Journal of the American Chemical Society.

[27]  Omar M Yaghi,et al.  Water adsorption in porous metal-organic frameworks and related materials. , 2014, Journal of the American Chemical Society.

[28]  Philipp Müller,et al.  A new metal-organic framework with ultra-high surface area. , 2014, Chemical communications.

[29]  Chuande Wu,et al.  Porous metal-organic frameworks for heterogeneous biomimetic catalysis. , 2014, Accounts of chemical research.

[30]  Xiao-Jun Lv,et al.  High gas storage capacities and stepwise adsorption in a UiO type metal-organic framework incorporating Lewis basic bipyridyl sites. , 2014, Chemical communications.

[31]  Yousung Jung,et al.  Can Metal-Organic Framework Separate 1-Butene from Butene Isomers? , 2014, The journal of physical chemistry letters.

[32]  Dawei Feng,et al.  Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology. , 2014, Angewandte Chemie.

[33]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .

[34]  J. Long,et al.  Hydrocarbon Separations in Metal–Organic Frameworks , 2014 .

[35]  Hong‐Cai Zhou,et al.  Metal-organic frameworks based on previously unknown Zr8/Hf8 cubic clusters. , 2013, Inorganic chemistry.

[36]  Chongli Zhong,et al.  A water stable metal-organic framework with optimal features for CO2 capture. , 2013, Angewandte Chemie.

[37]  Dawei Feng,et al.  An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. , 2013, Journal of the American Chemical Society.

[38]  W. Zhou,et al.  A series of metal–organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity , 2013 .

[39]  M. O'keeffe,et al.  Low-energy regeneration and high productivity in a lanthanide-hexacarboxylate framework for high-pressure CO2-CH4-H2 separation. , 2013, Chemical communications.

[40]  S. Cheng,et al.  Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase. , 2013, Journal of the American Chemical Society.

[41]  Lixian Sun,et al.  Enhanced selectivity of CO(2) over CH(4) in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. , 2013, Dalton transactions.

[42]  Stefan Kaskel,et al.  Zr- and Hf-Based Metal–Organic Frameworks: Tracking Down the Polymorphism , 2013 .

[43]  Shengqian Ma,et al.  Biomimetic catalysis of a porous iron-based metal-metalloporphyrin framework. , 2012, Inorganic chemistry.

[44]  W. Zhou,et al.  Microporous metal-organic frameworks for storage and separation of small hydrocarbons. , 2012, Chemical communications.

[45]  Hong-Cai Zhou,et al.  Methane storage in advanced porous materials. , 2012, Chemical Society reviews.

[46]  Dawei Feng,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[47]  Rajamani Krishna,et al.  Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons , 2012 .

[48]  Christian Serre,et al.  A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. , 2012, Angewandte Chemie.

[49]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[50]  Zhong Li,et al.  Enhanced stability and CO2 affinity of a UiO-66 type metal-organic framework decorated with dimethyl groups. , 2012, Dalton transactions.

[51]  Duilio Cascio,et al.  Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. , 2012, Inorganic chemistry.

[52]  Rajamani Krishna,et al.  A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. , 2012, Chemical communications.

[53]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[54]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[55]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[56]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[57]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[58]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[59]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[60]  R. Banerjee,et al.  Helical water chain mediated proton conductivity in homochiral metal-organic frameworks with unprecedented zeolitic unh-topology. , 2011, Journal of the American Chemical Society.

[61]  Peter Behrens,et al.  Porous interpenetrated zirconium-organic frameworks (PIZOFs): a chemically versatile family of metal-organic frameworks. , 2011, Chemistry.

[62]  Daqiang Yuan,et al.  The current status of hydrogen storage in metal–organic frameworks—updated , 2011 .

[63]  Perla B. Balbuena,et al.  Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks , 2011 .

[64]  F. Kapteijn,et al.  Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. , 2011, Chemistry.

[65]  Zhong Li,et al.  Tuning the moisture stability of metal-organic frameworks by incorporating hydrophobic functional groups at different positions of ligands. , 2011, Chemical communications.

[66]  S. Kaskel,et al.  Chiral Metal‐Organic Frameworks and Their Application in Asymmetric Catalysis and Stereoselective Separation , 2011 .

[67]  Kristina Gedrich,et al.  Eine hochporöse Metall-organische Gerüstverbindung mit zugänglichen Nickelzentren , 2010 .

[68]  U. Mueller,et al.  A highly porous metal-organic framework with open nickel sites. , 2010, Angewandte Chemie.

[69]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[70]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[71]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[72]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[73]  V. Thangadurai,et al.  Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework. , 2009, Nature chemistry.

[74]  Jianwen Jiang,et al.  Molecular insight into adsorption and diffusion of alkane isomer mixtures in metal-organic frameworks. , 2009, The journal of physical chemistry. B.

[75]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[76]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[77]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[78]  A. Matzger,et al.  A porous coordination copolymer with over 5000 m2/g BET surface area. , 2009, Journal of the American Chemical Society.

[79]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[80]  J. Caro,et al.  Adsorption and diffusion of alkanes in CuBTC crystals investigated using infra-red microscopy and molecular simulations , 2009 .

[81]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[82]  M. Hartmann,et al.  Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[83]  H. Gies,et al.  Liquid phase separation of 1-butene from 2-butenes on all-silica zeolite RUB-41. , 2008, Chemical communications.

[84]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[85]  Tao Wu,et al.  Understanding adsorption and interactions of alkane isomer mixtures in isoreticular metal-organic frameworks. , 2007, Chemistry.

[86]  Krista S. Walton,et al.  Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[87]  Fei Wang,et al.  Experiment and Modeling of Pure and Binary Adsorption of n-Butane and Butene-1 on ZSM-5 Zeolites with Different Si/Al Ratios , 2007 .

[88]  A. Corma,et al.  Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. , 2007, Chemical communications.

[89]  P. Llewellyn,et al.  Is the bet equation applicable to microporous adsorbents , 2007 .

[90]  Daofeng Sun,et al.  An interweaving MOF with high hydrogen uptake. , 2006, Journal of the American Chemical Society.

[91]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[92]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[93]  R. T. Yang,et al.  Cu(I)−Y-Zeolite as a Superior Adsorbent for Diene/Olefin Separation , 2001 .

[94]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[95]  F. Kapteijn,et al.  Selective adsorption of unsaturated linear C4 molecules on the all-silica DD3R , 2000 .

[96]  R. T. Yang,et al.  New Sorbents for Olefin/Paraffin Separations and Olefin Purification for C4 Hydrocarbons , 1999 .

[97]  M. Olivier,et al.  ADSORPTION OF BUTANE, 2-METHYLPROPANE, AND 1-BUTENE ON ACTIVATED CARBON , 1994 .

[98]  J. Bougard,et al.  Adsorption of 2-methylpropene and 1,3-butadiene on activated carbon , 1994 .

[99]  S. Hyun,et al.  Equilibrium adsorption of ethane, ethylene, isobutane, carbon dioxide, and their binary mixtures on 13X molecular sieves , 1982 .

[100]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .