Synchronization of self-excited oscillators suspended on elastic structure
暂无分享,去创建一个
Przemyslaw Perlikowski | Tomasz Kapitaniak | Krzysztof Czolczynski | Andrzej Stefanski | T. Kapitaniak | P. Perlikowski | K. Czołczyński | A. Stefański
[1] J. E. Littlewood,et al. On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .
[2] N. Levinson,et al. A Second Order Differential Equation with Singular Solutions , 1949 .
[3] S. Boccaletti,et al. Synchronization of chaotic systems , 2001 .
[4] Parlitz,et al. Period-doubling cascades and devil's staircases of the driven van der Pol oscillator. , 1987, Physical review. A, General physics.
[5] M. Rabinovich,et al. Stochastic synchronization of oscillation in dissipative systems , 1986 .
[6] Carroll,et al. Synchronization in chaotic systems. , 1990, Physical review letters.
[7] Chaos synchronization and riddled basins in two coupled one-dimensional maps , 1998 .
[8] Tomasz Kapitaniak,et al. On transverse stability of synchronized chaotic attractors , 1996 .
[9] A. Shabana. Theory of vibration , 1991 .
[10] H. Fujisaka,et al. Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. II: The Mapping Approach , 1983 .
[11] J. Grasman. Relaxation oscillations of a van der pol equation with large critical forcing term : (preprint) , 1978 .
[12] Tomasz Kapitaniak,et al. Synchronization of mechanical systems driven by chaotic or random excitation , 2003 .