Tapered diode-pumped continuous-wave alexandrite laser

We describe a low-cost and efficient alexandrite (Cr:BeAl2O4) laser that is pumped by a high-brightness tapered diode laser (TDL). The tapered diode (TD) provides up to 1.1 W of output power and its wavelength can be fine-tuned to either 680.4 nm (R1 line) or 678.5 nm (R2 line) for efficient in-line pumping. Continuous-wave (cw) output powers of 200 mW, slope efficiencies as high as 38%, and a cw tuning range extending from 724 to 816 nm have been achieved. To the best of our knowledge, the cw power levels and slope efficiencies are the highest demonstrated so far from such a minimal complexity and low-cost system based on the alexandrite gain medium. Consequently, TDs operating in the red spectral region have the potential to become the standard pump sources for cw alexandrite lasers in the near future.

[1]  Martin Traub,et al.  Broadly tunable, diode pumped Alexandrite laser , 2013 .

[2]  M. Damzen,et al.  Multi-Watt diode-pumped alexandrite laser operation , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[3]  A. Sennaroğlu,et al.  Self-Q-switched Cr:LiCAF laser , 2013 .

[4]  J. Squier,et al.  Multiphoton imaging with a direct‐diode pumped femtosecond Ti:sapphire laser , 2013, Journal of microscopy.

[5]  R. Uecker,et al.  Low-cost, broadly tunable (375-433 nm & 746-887 nm) Cr:LiCAF laser pumped by one single-spatial-mode diode. , 2012, Applied optics.

[6]  David Burns,et al.  Power scaling of a directly diode-laser-pumped Ti:sapphire laser. , 2012, Optics express.

[7]  Alfred Leitenstorfer,et al.  Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach , 2012 .

[8]  Charles G. Durfee,et al.  Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser , 2012, Optics express.

[9]  J. G. Fujimoto,et al.  Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[10]  J. Fujimoto,et al.  Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers. , 2011, Optics express.

[11]  Ole Bjarlin Jensen,et al.  Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses. , 2011, Optics express.

[12]  K. Petermann,et al.  Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm. , 2011, Optics letters.

[13]  D. Hanna,et al.  Principles of Lasers , 2011 .

[14]  B. Sumpf,et al.  Nearly Diffraction-Limited Tapered Lasers at 675 nm With 1-W Output Power and Conversion Efficiencies Above 30% , 2011, IEEE Photonics Technology Letters.

[15]  David Burns,et al.  Direct diode-laser pumping of a mode-locked Ti:sapphire laser. , 2011, Optics letters.

[16]  David Burns,et al.  Directly diode-laser-pumped Ti:sapphire laser. , 2009, Optics letters.

[17]  Umit Demirbas,et al.  Low-cost, single-mode diode-pumped Cr:Colquiriite lasers. , 2009, Optics express.

[18]  David A Boas,et al.  Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser. , 2008, Optics express.

[19]  Patrick Georges,et al.  New laser crystals for the generation of ultrashort pulses , 2007 .

[20]  Zhen-qiang Chen,et al.  Free-running emerald laser pumped by laser diode , 2006 .

[21]  D. C. Brown,et al.  High efficiency CW green-pumped alexandrite lasers , 2006, SPIE LASE.

[22]  A. Marrakchi,et al.  Watt-level red and UV output from a CW diode array pumped tunable alexandrite laser , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[23]  Jerry W. Kuper,et al.  Green pumped Alexandrite lasers , 2005, SPIE LASE.

[24]  W Sibbett,et al.  Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser. , 2004, Optics express.

[25]  E. Sorokin Solid-State Materials for Few-Cycle Pulse Generation and Amplification , 2004 .

[26]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[27]  Hans P. Jenssen,et al.  Tunable-laser performance in BeAl2O4:Cr3+ , 2002 .

[28]  Lloyd L. Chase,et al.  LiCaAlF6:Cr3+: A promising new solid-state laser material , 2002 .

[29]  J. Jabczynski,et al.  Chromium-doped LiCAF laser passively Q switched with a V3+:YAG crystal. , 2001, Applied optics.

[30]  J G Fujimoto,et al.  Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. , 2001, Optics letters.

[31]  A. Yogev,et al.  Visible solar-pumped lasers , 1999 .

[32]  Ian H. White,et al.  A simple device to allow enhanced bandwidths at 850 nm in multimode fibre links for gigabit LANs , 1999 .

[33]  M. Richardson,et al.  Measurement of thermal lensing in Cr/sup 3+/-doped colquiriites , 1998 .

[34]  A Hirth,et al.  Presentation of a new and simple technique of Q-switching with a LiSrAlF6:Cr3+ oscillator , 1998 .

[35]  M. Richardson,et al.  Measurement of Thermal Lensing in Cr3+ doped Colquiriites , 1998 .

[36]  A. Hirth,et al.  Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser , 1996 .

[37]  W. Webb,et al.  Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm , 1996 .

[38]  K. Naganuma,et al.  Compact diode-pumped all-solid-state femtosecond Cr(4+):YAG laser. , 1996, Optics letters.

[39]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[40]  M. Yamashita,et al.  Continuous-wave alexandrite laser pumped by a direct-current mercury arc lamp. , 1993, Applied optics.

[41]  S. Payne,et al.  Oxide and Fluoride Laser Crystals , 1993 .

[42]  Richard Scheps,et al.  Monochromatic end-pumped operation of an alexandrite laser , 1993 .

[43]  B. Chai,et al.  Thermal quenching of fluorescence in chromium-doped fluoride laser crystals , 1992 .

[44]  L. K. Smith,et al.  Investigation of the laser properties of Cr/sup 3+/:LiSrGaF/sub 6/ , 1992 .

[45]  Richard Scheps,et al.  Alexandrite laser pumped by semiconductor lasers , 1990 .

[46]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[47]  L. K. Smith,et al.  Laser performance of LiSrAlF6:Cr3+ , 1989 .

[48]  Lloyd L. Chase,et al.  LiCaAlF/sub 6/:Cr/sup 3+/: a promising new solid-state laser material , 1988 .

[49]  S. Lai Highly efficient emerald laser , 1987, International Laser Science Conference.

[50]  L. Deshazer,et al.  Extended infrared operation of a titanium sapphire laser , 1987 .

[51]  R. Aggarwal,et al.  Room-temperature continuous-wave operation of a Ti:Al2O3 laser. , 1986, Optics letters.

[52]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[53]  Donald F. Heller,et al.  Tunable alexandrite lasers: Development and performance , 1985 .

[54]  D. Sipes,et al.  Highly efficient neodymium:yttrium aluminum garnet laser end pumped by a semiconductor laser array , 1985 .

[55]  D. Harter,et al.  High-pressure mercury arc lamp excited cw alexandrite lasers , 1984 .

[56]  M. Shand,et al.  High efficiency cw laser‐pumped tunable alexandrite laser , 1983 .

[57]  M. Shand,et al.  Excited-state absorption in the lasing wavelength region of alexandrite , 1982 .

[58]  John C. Walling,et al.  Tunable alexandrite lasers , 1980 .

[59]  R. Morris,et al.  Tunable CW alexandrite laser , 1980 .

[60]  H. Jenssen,et al.  Tunable-laser performance in BeAl(2)O(4):Cr(3+). , 1979, Optics letters.

[61]  N. Woolf,et al.  Experiences with the Multiple Mirror Telescope. , 1979 .

[62]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[63]  J. Nella,et al.  Characteristics of room-temperature 2.3-µm laser emission from tm3+in YAG and YAlO3 , 1975, IEEE Journal of Quantum Electronics.

[64]  L. E. Erickson,et al.  SELF-Q-SWITCHING OF RUBY LASERS AT 77 DEGREES K, , 1968 .

[65]  I. Freund SELF‐Q‐SWITCHING IN RUBY LASERS , 1968 .

[66]  R. Collins,et al.  A NEW METHOD OF GIANT PULSING RUBY LASERS , 1968 .

[67]  L. Erickson,et al.  Self-Q-switching of ruby lasers at 77°K , 1968 .

[68]  M. Birnbaum,et al.  The ruby laser: Pumped by a pulsed argon ion laser , 1968 .

[69]  D. Findlay,et al.  The measurement of internal losses in 4-level lasers , 1966 .

[70]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.