A Class of Nested Iteration Schemes for Linear Systems with a Coefficient Matrix with a Dominant Positive Definite Symmetric Part

We present a class of nested iteration schemes for solving large sparse systems of linear equations with a coefficient matrix with a dominant symmetric positive definite part. These new schemes are actually inner/outer iterations, which employ the classical conjugate gradient method as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent and symmetric positive definite splitting of the coefficient matrix. Convergence properties of the new schemes are studied in depth, possible choices of the inner iteration steps are discussed in detail, and numerical examples from the finite-difference discretization of a second-order partial differential equation are used to further examine the effectiveness and robustness of the new schemes over GMRES and its preconditioned variant. Also, we show that the new schemes are, at least, comparable to the variable-step generalized conjugate gradient method and its preconditioned variant.

[1]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[2]  O. Axelsson,et al.  A restarted version of a generalized preconditioned conjugate gradient method , 1988 .

[3]  Nancy Nichols,et al.  On the Convergence of Two-Stage Iterative Processes for Solving Linear Equations , 1973 .

[4]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[5]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[6]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[7]  Gene H. Golub,et al.  Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration , 1999, SIAM J. Sci. Comput..

[8]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[9]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[10]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[11]  Zhong-Zhi Bai A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations , 1999, Adv. Comput. Math..

[12]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[13]  Owe Axelsson,et al.  Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems , 1994, Numer. Linear Algebra Appl..

[14]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[15]  Bai,et al.  A REGULARIZED CONJUGATE GRADIENT METHOD FOR SYMMETRIC POSITIVE DEFINITE SYSTEM OF LINEAR EQUATIONS , 2002 .

[16]  O. Axelsson Iterative solution methods , 1995 .

[17]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[18]  Zhong-Zhi Bai,et al.  Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems , 2000, Appl. Math. Comput..

[19]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[20]  D. Young Iterative methods for solving partial difference equations of elliptic type , 1954 .

[21]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[22]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[23]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[24]  Xiaoge Wang,et al.  CIMGS: An Incomplete Orthogonal FactorizationPreconditioner , 1997, SIAM J. Sci. Comput..

[25]  Iain S. Duff,et al.  A Class of Incomplete Orthogonal Factorization Methods. I: Methods and Theories , 1999 .

[26]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[27]  O. Axelsson A generalized conjugate gradient, least square method , 1987 .

[28]  R. A. Nicolaides,et al.  On the local convergence of certain two step terative procedures , 1975 .

[29]  G. Golub,et al.  The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems , 1988 .

[30]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[31]  Shao-Liang Zhang,et al.  GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..

[32]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[33]  O. Axelsson A generalized SSOR method , 1972 .

[34]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[35]  Zhong-Zhi Bai Modified Block SSOR Preconditioners for Symmetric Positive Definite Linear Systems , 2001, Ann. Oper. Res..

[36]  J. Daniel The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .

[37]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[38]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[39]  Gene H. Golub,et al.  Matrix computations , 1983 .