Efficient Construction of Spanners in $d$-Dimensions

In this paper we consider the problem of efficiently constructing $k$-vertex fault-tolerant geometric $t$-spanners in $\dspace$ (for $k \ge 0$ and $t >1$). Vertex fault-tolerant spanners were introduced by Levcopoulus et. al in 1998. For $k=0$, we present an $O(n \log n)$ method using the algebraic computation tree model to find a $t$-spanner with degree bound O(1) and weight $O(\weight(MST))$. This resolves an open problem. For $k \ge 1$, we present an efficient method that, given $n$ points in $\dspace$, constructs $k$-vertex fault-tolerant $t$-spanners with the maximum degree bound O(k) and weight bound $O(k^2 \weight(MST))$ in time $O(n \log n)$. Our method achieves the best possible bounds on degree, total edge length, and the time complexity, and solves the open problem of efficient construction of (fault-tolerant) $t$-spanners in $\dspace$ in time $O(n \log n)$.

[1]  Giri Narasimhan,et al.  Efficient algorithms for constructing fault-tolerant geometric spanners , 1998, STOC '98.

[2]  J. Mark Keil,et al.  Approximating the Complete Euclidean Graph , 1988, Scandinavian Workshop on Algorithm Theory.

[3]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[4]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1992, SCG '92.

[5]  Tamás Lukovszki,et al.  New Results of Fault Tolerant Geometric Spanners , 1999, WADS.

[6]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[7]  H. Regev The Weight of the Greedy Graph Spanner , 1995 .

[8]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[9]  David Peleg,et al.  (1 + εΒ)-spanner constructions for general graphs , 2001, STOC '01.

[10]  Leonidas J. Guibas,et al.  Static and kinetic geometric spanners with applications , 2001, SODA '01.

[11]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[12]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[13]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[14]  Giri Narasimhan,et al.  Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.

[15]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[16]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[17]  Franz Aurenhammer,et al.  Handbook of Computational Geometry , 2000 .

[18]  Joachim Gudmundsson,et al.  Constructing Plane Spanners of Bounded Degree and Low Weight , 2005, Algorithmica.

[19]  Giri Narasimhan,et al.  Approximating the Stretch Factor of Euclidean Graphs , 2000, SIAM J. Comput..

[20]  Joachim Gudmundsson,et al.  Region-Fault Tolerant Geometric Spanners , 2007, SODA '07.

[21]  Artur Czumaj,et al.  Fault-Tolerant Geometric Spanners , 2003, SCG '03.

[22]  Pravin M. Vaidya,et al.  A sparse graph almost as good as the complete graph on points inK dimensions , 1991, Discret. Comput. Geom..

[23]  Pravin M. Vaidya An optimal algorithm for the all-nearest-neighbors problem , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[24]  Giri Narasimhan,et al.  A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.

[25]  Jeffrey S. Salowe Construction of multidimensional spanner graphs, with applications to minimum spanning trees , 1991, SCG '91.

[26]  Michiel H. M. Smid,et al.  Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.

[27]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1995, Int. J. Comput. Geom. Appl..

[28]  Joachim Gudmundsson,et al.  Improved Greedy Algorithms for Constructing Sparse Geometric Spanners , 2000, SWAT.

[29]  J. Sack,et al.  Handbook of computational geometry , 2000 .