The influence of scan length on fabricating thin-walled components in selective laser melting

[1]  D. Lohse,et al.  Printing Functional 3D Microdevices by Laser-Induced Forward Transfer. , 2017, Small.

[2]  D. Gu,et al.  Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder , 2014 .

[3]  Richard M. Everson,et al.  Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting , 2013 .

[4]  Ming Gao,et al.  Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel , 2013 .

[5]  Yong-qiang Yang,et al.  Research on track overlapping during Selective Laser Melting of powders , 2012 .

[6]  Bo Song,et al.  Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering , 2012 .

[7]  J. Kruth,et al.  Optimization of thin wall structures in SLM , 2012 .

[8]  Yuanhai Xiao,et al.  Manufacturing of micro thin-walled metal parts by micro-droplet deposition , 2012 .

[9]  Antonio Domenico Ludovico,et al.  3D Finite Element Analysis in the selective laser melting process , 2011 .

[10]  D. Mynors,et al.  A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing , 2009 .

[11]  Yifu Shen,et al.  Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods , 2009 .

[12]  Pulak M. Pandey,et al.  Influence of building strategies on the accuracy of parts in selective laser sintering , 2009 .

[13]  Igor Shishkovsky,et al.  Manufacturing of fine-structured 3D porous filter elements by selective laser melting , 2009 .

[14]  I. Yadroitsev,et al.  Heat transfer modelling and stability analysis of selective laser melting , 2007 .

[15]  Haw-Long Lee,et al.  Estimating the absorptivity in laser processing by inverse methodology , 2007, Applied Mathematics and Computation.

[16]  L. Froyen,et al.  Light extinction in metallic powder beds : Correlation with powder structure , 2005 .

[17]  Lijun Li,et al.  Effects of powder concentration distribution on fabrication of thin-wall parts in coaxial laser cladding , 2005 .

[18]  Rémy Glardon,et al.  3D FE simulation for temperature evolution in the selective laser sintering process , 2004 .

[19]  Rémy Glardon,et al.  Sintering of commercially pure titanium powder with a Nd:YAG laser source , 2003 .

[20]  Leon L. Shaw,et al.  Distortion minimization of laser‐processed components through control of laser scanning patterns , 2002 .

[21]  L. Froyen,et al.  Lasers and materials in selective laser sintering , 2002 .

[22]  B. Yilbas,et al.  Material response to thermal loading due to short pulse laser heating , 2001 .

[23]  Vassili N. Kolokoltsov,et al.  Idempotent Structures in Optimization , 2001 .

[24]  A. Inoue,et al.  Rapidly solidified powder metallurgy Al-Ti-Fe alloys , 1997 .

[25]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[26]  Manfred J. Hampe,et al.  Selective laser melting for manufacturing of thin-walled porous elements , 2015 .

[27]  B. Stucker,et al.  A review of thermal analysis methods in Laser Sintering and Selective Laser Melting , 2012 .

[28]  Andrey V. Gusarov,et al.  Mechanisms of selective laser sintering and heat transfer in Ti powder , 2003 .

[29]  K. Osakada,et al.  Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing , 2002 .

[30]  K. Mills Recommended Values of Thermophysical Properties for Selected Commercial Alloys , 2001 .

[31]  D. A. Scott,et al.  Finite element model of pulsed laser welding , 1999 .

[32]  R. Oberacker,et al.  An introduction to powder metallurgy , 1993 .

[33]  J. Ready Effects of high-power laser radiation , 1971 .