The Toffoli-Hadamard Gate System: an Algebraic Approach

Shi and Aharonov have shown that the Toffoli gate and the Hadamard gate give rise to an approximately universal set of quantum computational gates. The basic algebraic properties of this system have been studied in Dalla Chiara et al. (Foundations of Physics 39(6):559–572, 2009), where we have introduced the notion of Shi-Aharonov quantum computational structure. In this paper we propose an algebraic abstraction from the Hilbert-space quantum computational structures, by introducing the notion of Toffoli-Hadamard algebra. From an intuitive point of view, such abstract algebras represent a natural quantum generalization of both classical and fuzzy-like structures.

[1]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[2]  Roberto Giuntini,et al.  The Algebraic Structure of an Approximately Universal System of Quantum Computational Gates , 2009 .

[3]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[4]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[5]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[6]  M. L. Dalla Chiara,et al.  Quantum Computational Logics. A Survey , 2003 .

[7]  Francesco Paoli,et al.  MV-Algebras and Quantum Computation , 2006, Stud Logica.

[8]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[9]  Attila B. Nagy On an implementation of the Solovay-Kitaev algorithm , 2006 .

[10]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  Stan Gudder,et al.  Quantum Computational Logic , 2003 .

[12]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  Roberto Giuntini,et al.  Logics from Quantum Computation , 2005 .

[15]  D. Aharonov A Simple Proof that Toffoli and Hadamard are Quantum Universal , 2003, quant-ph/0301040.

[16]  Gianpiero Cattaneo,et al.  Quantum computational structures , 2004 .