Seislet transform and seislet frame

We introduce a digital waveletlike transform, which is tailored specifically for representing seismic data. The transform provides a multiscale orthogonal basis with basis functions aligned along seismic events in the input data. It is defined with the help of the wavelet-lifting scheme combined with local plane-wave destruction. In the 1D case, the seislet transform is designed to follow locally sinusoidal components. In the 2D case, it is designed to follow local plane-wave components with smoothly variable slopes. If more than one component is present, the transform turns into an overcomplete representation or a tight frame. In these terms, the classic digital wavelet transform is simply a seislet transform for a zero frequency (in one dimension) or zero slope (in two dimensions). The main objective of the new transform is an effective seismic-data compression for designing efficient data-analysis algorithms. Traditional signal-processing tasks such as noise attenuation and trace interpolation become simply defined in the seislet domain. When applied in the offset direction on common-midpoint or common-image-point gathers, the seislet transform finds an additional application in optimal stacking of seismic records.

[1]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[2]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[3]  Wim Sweldens,et al.  Lifting scheme: a new philosophy in biorthogonal wavelet constructions , 1995, Optics + Photonics.

[4]  J. Claerbout Earth Soundings Analysis: Processing Versus Inversion , 1992 .

[5]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[6]  Baltasar Beferull-Lozano,et al.  Directionlets: anisotropic multidirectional representation with separable filtering , 2006, IEEE Transactions on Image Processing.

[7]  Wim Sweldens,et al.  Building your own wavelets at home , 2000 .

[8]  F. J. Dessing,et al.  A wavelet transform approach to seismic processing , 1997 .

[9]  A. Jensen,et al.  Ripples in Mathematics - The Discrete Wavelet Transform , 2001 .

[10]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[11]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[12]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[13]  V. Grechka,et al.  Nonhyperbolic reflection moveout of P -waves: An overview and comparison of reasons , 2012 .

[14]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[15]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[16]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[17]  L. Canales Random Noise Reduction , 1984 .

[18]  Yu Zhang,et al.  Antileakage Fourier transform for seismic data regularization , 2005 .

[19]  Huub Douma,et al.  Leading-order seismic imaging using curvelets , 2007 .

[20]  Stéphane Mallat,et al.  Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.

[21]  M. Wickerhauser,et al.  Wavelet Applications in Signal and Image Processing III , 1994 .

[22]  Jon F. Claerbout,et al.  Velocity-stack and slant-stack stochastic inversion , 1985 .

[23]  Mauricio D. Sacchi,et al.  Fourier Reconstruction of Nonuniformly Sampled, Aliased Seismic Data , 2022 .

[24]  Felix J. Herrmann,et al.  Curvelet-based seismic data processing : A multiscale and nonlinear approach , 2008 .

[25]  Sergey Fomel,et al.  Nonlinear Shaping Regularization In Geophysical Inverse Problems , 2008 .

[26]  Sergey Fomel,et al.  OC-seislet: Seislet transform construction with differential offset continuation , 2010 .

[27]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[28]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[29]  Hervé Chauris,et al.  Seismic demigration/migration in the curvelet domain , 2008 .

[30]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[31]  R. Abma,et al.  3D interpolation of irregular data with a POCS algorithm , 2006 .

[32]  A. Gisolf,et al.  Fourier reconstruction with sparse inversion , 2007 .

[33]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[34]  A. Gisolf,et al.  Fourier reconstruction of marine-streamer data in four spatial coordinates , 2006 .

[35]  Christopher Juhlin,et al.  Application of the continuous wavelet transform on seismic data for mapping of channel deposits and gas detection at the CO2SINK site, Ketzin, Germany , 2009 .

[36]  P. Schultz,et al.  Fundamentals of geophysical data processing , 1979 .

[37]  J. Thiran Recursive digital filters with maximally flat group delay , 1971 .

[38]  Vesa Välimäki,et al.  Fractional Delay Filters—Design and Applications , 2001 .

[39]  RESOLUTION AND NMO-STRETCH: IMAGING BY STACKING1 , 1989 .

[40]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[41]  Kees Wapenaar,et al.  The wavelet transform as a tool for geophysical data integration , 2005, Integr. Comput. Aided Eng..

[42]  Charles C. Mosher,et al.  Wavelet transform methods for geophysical applications , 1993, Optics & Photonics.

[43]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .